메뉴 건너뛰기




Volumn 47, Issue 6, 2013, Pages 893-903

Performance of an ensemble of ordinary, universal, non-stationary and limit Kriging predictors

Author keywords

Ensemble; Kriging; Surrogate modelling

Indexed keywords

ANALYTICAL FUNCTIONS; ENGINEERING DESIGN PROBLEMS; ENSEMBLE; HIGH-DIMENSIONAL PROBLEMS; KRIGING; MODELLING STRATEGIES; NON-STATIONARY KRIGING; SURROGATE MODELLING;

EID: 84879111941     PISSN: 1615147X     EISSN: 16151488     Source Type: Journal    
DOI: 10.1007/s00158-012-0866-5     Document Type: Article
Times cited : (17)

References (35)
  • 1
    • 79951812736 scopus 로고    scopus 로고
    • Surrogate modeling approximation using a mixture of experts based on em joint estimation
    • doi:10.1007/s00158-010-0554-2 10.1007/s00158-010-0554-2
    • Bettebghor D, Bartoli N, Grihon S, Morlier J, Samuelides M (2011) Surrogate modeling approximation using a mixture of experts based on em joint estimation. Struct Multidisc Optim 43(2): 243-259. doi: 10.1007/s00158-010-0554- 2
    • (2011) Struct Multidisc Optim , vol.43 , Issue.2 , pp. 243-259
    • Bettebghor, D.1    Bartoli, N.2    Grihon, S.3    Morlier, J.4    Samuelides, M.5
  • 3
    • 79959771640 scopus 로고    scopus 로고
    • Swarm heuristic for identifying preferred solutions in surrogate-based multi-objective engineering design
    • 10.2514/1.J050819
    • Carrese R, Sobester A, Winarto H, Xiaodong L (2011) Swarm heuristic for identifying preferred solutions in surrogate-based multi-objective engineering design. AIAA J 49(7):1437-1449
    • (2011) AIAA J , vol.49 , Issue.7 , pp. 1437-1449
    • Carrese, R.1    Sobester, A.2    Winarto, H.3    Xiaodong, L.4
  • 4
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines
    • doi:10.1016/j. neucom.2005.12.014 10.1016/j.neucom.2005.12.014
    • Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines. Neurocomputing 69(7-9):686-700. doi: 10.1016/j.neucom.2005.12.014
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 5
    • 25144486629 scopus 로고    scopus 로고
    • Analysis of support vector regression for approximation of complex engineering analyses
    • 10.1115/1.1897403
    • Clarke S, Griedsch J, Simpson T (2005) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Des 127(6):1077-1087
    • (2005) J Mech des , vol.127 , Issue.6 , pp. 1077-1087
    • Clarke, S.1    Griedsch, J.2    Simpson, T.3
  • 7
    • 27144461976 scopus 로고    scopus 로고
    • Mulit-objective evolutionary optimization of subsonic airfoils by kriging approximation and evolution control
    • D'Angelo S, Minisci E (2005) Mulit-objective evolutionary optimization of subsonic airfoils by kriging approximation and evolution control. In: 2005 IEEE congress on evolutionary computation, vol 2, pp 1262-1267
    • (2005) 2005 IEEE Congress on Evolutionary Computation , vol.2 , pp. 1262-1267
    • D'Angelo, S.1    Minisci, E.2
  • 8
    • 33745727159 scopus 로고    scopus 로고
    • A hybrid ensemble model of kriging and neural network for ore grade estimation
    • doi:10.1080/13895260500322236 10.1080/13895260500322236
    • Dutta S, Misra D, Ganguli R, Samanta B, Bandopadhyay S (2006) A hybrid ensemble model of kriging and neural network for ore grade estimation. Int J Min Reclam Environ 20(1):33-45. doi: 10.1080/13895260500322236
    • (2006) Int J Min Reclam Environ , vol.20 , Issue.1 , pp. 33-45
    • Dutta, S.1    Misra, D.2    Ganguli, R.3    Samanta, B.4    Bandopadhyay, S.5
  • 9
    • 58549086381 scopus 로고    scopus 로고
    • Recent advances in surrogate-based optimization
    • doi:10.1016/j.paerosci. 2008.11.001 10.1016/j.paerosci.2008.11.001
    • Forrester A, Keane A (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45(1-3):50-79. doi: 10.1016/j.paerosci.2008.11.001
    • (2009) Prog Aerosp Sci , vol.45 , Issue.1-3 , pp. 50-79
    • Forrester, A.1    Keane, A.2
  • 10
    • 33846688018 scopus 로고    scopus 로고
    • Ensemble of surrogates
    • doi:10.1007/ s00158-006-0051-9 10.1007/s00158-006-0051-9
    • Goel T, Haftka R, Shyy W, Queipo N (2007) Ensemble of surrogates. Struct Multidisc Optim 33(3):199-216. doi: 10.1007/s00158-006-0051-9
    • (2007) Struct Multidisc Optim , vol.33 , Issue.3 , pp. 199-216
    • Goel, T.1    Haftka, R.2    Shyy, W.3    Queipo, N.4
  • 11
    • 54049121839 scopus 로고    scopus 로고
    • An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization
    • 2447415 10.1007/s11081-008-9037-3
    • Holmstrom K, Quttineh N, Edvall M (2008) An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization. Optim Eng 9:311-339
    • (2008) Optim Eng , vol.9 , pp. 311-339
    • Holmstrom, K.1    Quttineh, N.2    Edvall, M.3
  • 12
    • 33751213348 scopus 로고    scopus 로고
    • Design optimization of a two-dimensional subsonic engine air intake
    • 10.2514/1.16123
    • Hoyle N, Bressloff N, Keane A (2006) Design optimization of a two-dimensional subsonic engine air intake. AIAA J 44(11):2672-2681
    • (2006) AIAA J , vol.44 , Issue.11 , pp. 2672-2681
    • Hoyle, N.1    Bressloff, N.2    Keane, A.3
  • 13
    • 0035727744 scopus 로고    scopus 로고
    • Comparitive studies of metamodelling techniques under multiple modelling criteria
    • 10.1007/s00158-001-0160-4
    • Jin R, Chen W, Simpson T (2001) Comparitive studies of meta-modelling techniques under multiple modelling criteria. Struct Multidisc Optim 23(1):1-13
    • (2001) Struct Multidisc Optim , vol.23 , Issue.1 , pp. 1-13
    • Jin, R.1    Chen, W.2    Simpson, T.3
  • 14
    • 0035577808 scopus 로고    scopus 로고
    • A taxonomy of global optimization methods based on response surfaces
    • doi:10.1023/A:1012771025575 1172.90492 10.1023/A:1012771025575
    • Jones D (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21(4):345-383. doi: 10.1023/A:1012771025575
    • (2001) J Glob Optim , vol.21 , Issue.4 , pp. 345-383
    • Jones, D.1
  • 15
    • 33646437256 scopus 로고    scopus 로고
    • Statistical improvement criteria for use in mulitobjective design optimization
    • 10.2514/1.16875
    • Keane A (2006) Statistical improvement criteria for use in mulitobjective design optimization. AIAA J 44(4):879-891
    • (2006) AIAA J , vol.44 , Issue.4 , pp. 879-891
    • Keane, A.1
  • 17
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the witwatersrand
    • doi:10.2307/3006914
    • Krige D (1951) A statistical approach to some basic mine valuation problems on the witwatersrand. J Chem Metal Min Soc South Africa 52(6):119-139. doi: 10.2307/3006914
    • (1951) J Chem Metal Min Soc South Africa , vol.52 , Issue.6 , pp. 119-139
    • Krige, D.1
  • 18
    • 77952513953 scopus 로고    scopus 로고
    • Comparison of surrogate models in a multidisciplinary optimization framework fir wing design
    • 10.2514/1.45790
    • Paiva R, Carvalho A, Crawford C, Suleman A (2010) Comparison of surrogate models in a multidisciplinary optimization framework fir wing design. AIAA J 48(5):995-1006
    • (2010) AIAA J , vol.48 , Issue.5 , pp. 995-1006
    • Paiva, R.1    Carvalho, A.2    Crawford, C.3    Suleman, A.4
  • 19
    • 84859898734 scopus 로고    scopus 로고
    • Geometry parameterization and multidisciplinary constrained optimisation of coronary stents
    • 10.1007/s10237-011-0293-3
    • Pant S, Bressloff N, Limbert G (2011) Geometry parameterization and multidisciplinary constrained optimisation of coronary stents. Biomech Model Mechanobiol 11(1):61-82
    • (2011) Biomech Model Mechanobiol , vol.11 , Issue.1 , pp. 61-82
    • Pant, S.1    Bressloff, N.2    Limbert, G.3
  • 20
    • 17444368645 scopus 로고    scopus 로고
    • Surrogate-based analysis and optimization
    • doi:10.1016/j.paerosci.2005.02.001 10.1016/j.paerosci.2005.02.001
    • Queipo N, Haftka R, Shyy W, Goel T, Vaidyanathan R, Tucker P (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41:1-28. doi: 10.1016/j.paerosci.2005.02.001
    • (2005) Prog Aerosp Sci , vol.41 , pp. 1-28
    • Queipo, N.1    Haftka, R.2    Shyy, W.3    Goel, T.4    Vaidyanathan, R.5    Tucker, P.6
  • 21
    • 33845246400 scopus 로고    scopus 로고
    • Limit kriging
    • doi:10.1198/004017006000000011 2328615 10.1198/004017006000000011
    • Roshan V (2006) Limit kriging. Technometrics 48(4):458-466. doi: 10.1198/004017006000000011
    • (2006) Technometrics , vol.48 , Issue.4 , pp. 458-466
    • Roshan, V.1
  • 22
    • 44649085662 scopus 로고    scopus 로고
    • Blind Kriging: A new method for developing metamodels
    • Roshan V, Hung Y, Sudjianto A (2008) Blind Kriging: a new method for developing metamodels. J Mech Des 130(3):031102-1-031102-8
    • (2008) J Mech des , vol.130 , Issue.3 , pp. 0311021-0311028
    • Roshan, V.1    Hung, Y.2    Sudjianto, A.3
  • 23
    • 84972517827 scopus 로고
    • Design and analysis of computer experiments
    • doi:10.2307/2245858 1041765 0955.62619 10.1214/ss/1177012413
    • Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments. Stat Sci 4(4):409-435. doi: 10.2307/2245858
    • (1989) Stat Sci , vol.4 , Issue.4 , pp. 409-435
    • Sacks, J.1    Welch, W.2    Mitchell, T.3    Wynn, H.4
  • 24
    • 0037436174 scopus 로고    scopus 로고
    • Structural optimization using kriging approximation
    • 1025.74024 10.1016/S0045-7825(02)00617-5
    • Sakata S, Ashida F, Zako M (2003) Structural optimization using kriging approximation. Comput Methods Appl Mech Eng 192(7-9):923-939
    • (2003) Comput Methods Appl Mech Eng , vol.192 , Issue.7-9 , pp. 923-939
    • Sakata, S.1    Ashida, F.2    Zako, M.3
  • 25
    • 0034933620 scopus 로고    scopus 로고
    • Metamodels for computer-based engineering design: Survey and recommendations
    • doi:10.1007/PL00007198 0985.68599 10.1007/PL00007198
    • Simpson T, Peplinski J, Kock P, Allen J (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2):129-150. doi: 10.1007/PL00007198
    • (2001) Eng Comput , vol.17 , Issue.2 , pp. 129-150
    • Simpson, T.1    Peplinski, J.2    Kock, P.3    Allen, J.4
  • 27
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • 2086398 10.1023/B:STCO.0000035301.49549.88
    • Smola A, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199-222
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.1    Scholkopf, B.2
  • 28
    • 84861413463 scopus 로고    scopus 로고
    • Non-stationary kriging for design optimization
    • doi: 10.1080/0305215X.2011.607816
    • Toal D, Keane A (2011a) Non-stationary kriging for design optimization. Eng Optim. doi: 10.1080/0305215X.2011.607816
    • (2011) Eng Optim.
    • Toal, D.1    Keane, A.2
  • 29
    • 84879078844 scopus 로고    scopus 로고
    • Non-stationary kriging prediction of the performance of turbomachinery components
    • Istanbul, Turkey. 21-25 Mar 2011
    • Toal D, Keane A (2011b) Non-stationary kriging prediction of the performance of turbomachinery components. In: European turbo-machinery conference, Istanbul, Turkey. 21-25 Mar 2011
    • (2011) European Turbo-machinery Conference
    • Toal, D.1    Keane, A.2
  • 30
    • 77952495176 scopus 로고    scopus 로고
    • Geometric filtration using POD for aerodynamic design optimisation
    • doi:10.2514/1.41420 10.2514/1.41420
    • Toal D, Bressloff N, Keane A (2010) Geometric filtration using POD for aerodynamic design optimisation. AIAA J 48(5):916-928. doi: 10.2514/1.41420
    • (2010) AIAA J , vol.48 , Issue.5 , pp. 916-928
    • Toal, D.1    Bressloff, N.2    Keane, A.3
  • 31
    • 79957445889 scopus 로고    scopus 로고
    • The development of a hybridized particle swarm for kriging hyperparameter tuning
    • doi:10.1080/0305215X.2010.508524 10.1080/0305215X.2010.508524
    • Toal D, Bressloff N, Keane A, Holden C (2011) The development of a hybridized particle swarm for kriging hyperparameter tuning. Eng Optim 43(6):675-699. doi: 10.1080/0305215X.2010.508524
    • (2011) Eng Optim , vol.43 , Issue.6 , pp. 675-699
    • Toal, D.1    Bressloff, N.2    Keane, A.3    Holden, C.4
  • 32
    • 69949172900 scopus 로고    scopus 로고
    • Multiple surrogates: How cross-validation errors can helps us to obtain the best predictor
    • 10.1007/s00158-008-0338-0
    • Viana F, Haftka R, Steffen V (2009) Multiple surrogates: How cross-validation errors can helps us to obtain the best predictor. Struct Multidisc Optim 39(4):439-457
    • (2009) Struct Multidisc Optim , vol.39 , Issue.4 , pp. 439-457
    • Viana, F.1    Haftka, R.2    Steffen, V.3
  • 33
    • 34547796463 scopus 로고    scopus 로고
    • A non-stationary covariance-based kriging method for metamodelling in engineering design
    • 1194.74553 10.1002/nme.1969
    • Xiong Y, Chen W, Apley D, Ding X (2007) A non-stationary covariance-based kriging method for metamodelling in engineering design. Int J Numer Methods Eng 71(6):733-756
    • (2007) Int J Numer Methods Eng , vol.71 , Issue.6 , pp. 733-756
    • Xiong, Y.1    Chen, W.2    Apley, D.3    Ding, X.4
  • 34
    • 79960039766 scopus 로고    scopus 로고
    • A multi-surrogate approximation method for metamodeling
    • doi:10.1007/s00366- 009-0173-y 10.1007/s00366-009-0173-y
    • Zhao D, Xue D (2011) A multi-surrogate approximation method for metamodeling. Eng Comput 27(2):139-153. doi: 10.1007/s00366-009-0173-y
    • (2011) Eng Comput , vol.27 , Issue.2 , pp. 139-153
    • Zhao, D.1    Xue, D.2
  • 35
    • 84855812994 scopus 로고    scopus 로고
    • Ensemble of surrogates with recursive arithmetic average
    • doi: 10.1007/s00158-011-0655-6
    • Zhou X, Ma Y, Li X (2011) Ensemble of surrogates with recursive arithmetic average. Struct Multidisc Optim. doi: 10.1007/s00158-011-0655-6
    • (2011) Struct Multidisc Optim.
    • Zhou, X.1    Ma, Y.2    Li, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.