-
1
-
-
2342613652
-
The proteasome: A suitable antineoplastic target
-
Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349-360.
-
(2004)
Nat Rev Cancer
, vol.4
, pp. 349-360
-
-
Adams, J.1
-
2
-
-
0038686574
-
Proteasome disassembly and downregulation is correlated with viability during stationary phase
-
Bajorek M, Finley D, and Glickman MH (2003) Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr Biol 13: 1140-1144.
-
(2003)
Curr Biol
, vol.13
, pp. 1140-1144
-
-
Bajorek, M.1
Finley, D.2
Glickman, M.H.3
-
3
-
-
16844385435
-
Characterization of the fkbp. Rapamycin.frb ternary complex
-
Banaszynski LA, Liu CW, and Wandless TJ (2005) Characterization of the FKBP. rapamycin.FRB ternary complex. J Am Chem Soc 127:4715-4721.
-
(2005)
J Am Chem Soc
, vol.127
, pp. 4715-4721
-
-
Banaszynski, L.A.1
Liu, C.W.2
Wandless, T.J.3
-
4
-
-
34548076410
-
In vitro metabolic study of temsirolimus: Preparation, isolation, and identification of the metabolites
-
Cai P, Tsao R, and Ruppen ME (2007) In vitro metabolic study of temsirolimus: preparation, isolation, and identification of the metabolites. Drug Metab Dispos 35: 1554-1563.
-
(2007)
Drug Metab Dispos
, vol.35
, pp. 1554-1563
-
-
Cai, P.1
Tsao, R.2
Ruppen, M.E.3
-
5
-
-
82755187338
-
Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting
-
Ciechanover A (2012) Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim Biophys Acta 1824:3-13.
-
(2012)
Biochim Biophys Acta
, vol.1824
, pp. 3-13
-
-
Ciechanover, A.1
-
6
-
-
77649237033
-
Building on bortezomib: Second-generation proteasome inhibitors as anti-cancer therapy
-
Dick LR and Fleming PE (2010) Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov Today 15:243-249.
-
(2010)
Drug Discov Today
, vol.15
, pp. 243-249
-
-
Dick, L.R.1
Fleming, P.E.2
-
7
-
-
67649958571
-
Current status and challenges associated with targeting mtor for cancer therapy
-
Dowling RJO, Pollak M, and Sonenberg N (2009) Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs 23:77-91.
-
(2009)
BioDrugs
, vol.23
, pp. 77-91
-
-
Dowling, R.J.O.1
Pollak, M.2
Sonenberg, N.3
-
8
-
-
84859702750
-
Molecular model of the human 26s proteasome
-
da Fonseca PC, He J, and Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46:54-66.
-
(2012)
Mol Cell
, vol.46
, pp. 54-66
-
-
Da Fonseca, P.C.1
He, J.2
Morris, E.P.3
-
9
-
-
20344366589
-
Small-molecule inhibitors of proteasome activity
-
Gaczynska M and Osmulski PA (2005) Small-molecule inhibitors of proteasome activity. Methods Mol Biol 301:3-22.
-
(2005)
Methods Mol Biol
, vol.301
, pp. 3-22
-
-
Gaczynska, M.1
Osmulski, P.A.2
-
10
-
-
80054836161
-
Atomic force microscopy of proteasome assemblies
-
Gaczynska M and Osmulski PA (2011) Atomic force microscopy of proteasome assemblies. Methods Mol Biol 736:117-132.
-
(2011)
Methods Mol Biol
, vol.736
, pp. 117-132
-
-
Gaczynska, M.1
Osmulski, P.A.2
-
11
-
-
0042848726
-
Proline-And arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity
-
Gaczynska M, Osmulski PA, Gao Y, Post MJ, and Simons M (2003) Proline-And arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity. Biochemistry 42:8663-8670.
-
(2003)
Biochemistry
, vol.42
, pp. 8663-8670
-
-
Gaczynska, M.1
Osmulski, P.A.2
Gao, Y.3
Post, M.J.4
Simons, M.5
-
12
-
-
0033847049
-
Inhibition of ubiquitin-proteasome pathway-mediated i k b a degradation by a naturally occurring antibacterial peptide
-
Gao Y, Lecker S, Post MJ, Hietaranta AJ, Li J, Volk R, Li M, Sato K, Saluja AK, and Steer ML, et al. (2000) Inhibition of ubiquitin-proteasome pathway-mediated I k B a degradation by a naturally occurring antibacterial peptide. J Clin Invest 106: 439-448
-
(2000)
J Clin Invest
, vol.106
, pp. 439-448
-
-
Gao, Y.1
Lecker, S.2
Post, M.J.3
Hietaranta, A.J.4
Li, J.5
Volk, R.6
Li, M.7
Sato, K.8
Saluja, A.K.9
Steer, M.L.10
-
13
-
-
47649125643
-
Allosteric regulation and catalysis emerge via a common route
-
Goodey NM and Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4:474-482.
-
(2008)
Nat Chem Biol
, vol.4
, pp. 474-482
-
-
Goodey, N.M.1
Benkovic, S.J.2
-
14
-
-
0030897031
-
Structure of 20s proteasome from yeast at 2.4 a resolution
-
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, and Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Löwe, J.3
Stock, D.4
Bochtler, M.5
Bartunik, H.D.6
Huber, R.7
-
15
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, and Carter CS, et al. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392-395.
-
(2009)
Nature
, vol.460
, pp. 392-395
-
-
Harrison, D.E.1
Strong, R.2
Sharp, Z.D.3
Nelson, J.F.4
Astle, C.M.5
Flurkey, K.6
Nadon, N.L.7
Wilkinson, J.E.8
Frenkel, K.9
Carter, C.S.10
-
16
-
-
84857949883
-
The 19s cap puzzle: A new jigsaw piece
-
Huber EM and Groll M (2012) The 19S cap puzzle: a new jigsaw piece. Structure 20: 387-388
-
(2012)
Structure
, vol.20
, pp. 387-388
-
-
Huber, E.M.1
Groll, M.2
-
17
-
-
33749265270
-
Structure of the blm10-20 s proteasome complex by cryoelectron microscopy. Insights into the mechanism of activation of mature yeast proteasomes
-
Iwanczyk J, Sadre-Bazzaz K, Ferrell K, Kondrashkina E, Formosa T, Hill CP, and Ortega J (2006) Structure of the Blm10-20 S proteasome complex by cryoelectron microscopy. Insights into the mechanism of activation of mature yeast proteasomes. J Mol Biol 363:648-659.
-
(2006)
J Mol Biol
, vol.363
, pp. 648-659
-
-
Iwanczyk, J.1
Sadre-Bazzaz, K.2
Ferrell, K.3
Kondrashkina, E.4
Formosa, T.5
Hill, C.P.6
Ortega, J.7
-
18
-
-
77951949985
-
Potential allosteric modulators of the proteasome activity
-
Jankowska E, Gaczynska M, Osmulski P, Sikorska E, Rostankowski R, Madabhushi S, Tokmina-Lukaszewska M, and Kasprzykowski F (2010) Potential allosteric modulators of the proteasome activity. Biopolymers 93:481-495.
-
(2010)
Biopolymers
, vol.93
, pp. 481-495
-
-
Jankowska, E.1
Gaczynska, M.2
Osmulski, P.3
Sikorska, E.4
Rostankowski, R.5
Madabhushi, S.6
Tokmina-Lukaszewska, M.7
Kasprzykowski, F.8
-
19
-
-
36849059755
-
Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
-
Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, and Finley D (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14:1180-1188
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 1180-1188
-
-
Kleijnen, M.F.1
Roelofs, J.2
Park, S.3
Hathaway, N.A.4
Glickman, M.5
King, R.W.6
Finley, D.7
-
20
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, and Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482: 186-191.
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
21
-
-
84857134729
-
Molecular architecture of the 26s proteasome holocomplex determined by an integrative approach
-
Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, and Baumeister W (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109:1380-1387.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 1380-1387
-
-
Lasker, K.1
Förster, F.2
Bohn, S.3
Walzthoeni, T.4
Villa, E.5
Unverdorben, P.6
Beck, F.7
Aebersold, R.8
Sali, A.9
Baumeister, W.10
-
22
-
-
0033970878
-
Pr39, a peptide regulator of angiogenesis
-
Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, and Rosenberg RD, et al. (2000) PR39, a peptide regulator of angiogenesis. Nat Med 6:49-55.
-
(2000)
Nat Med
, vol.6
, pp. 49-55
-
-
Li, J.1
Post, M.2
Volk, R.3
Gao, Y.4
Li, M.5
Metais, C.6
Sato, K.7
Tsai, J.8
Aird, W.9
Rosenberg, R.D.10
-
23
-
-
77954978455
-
Effect of noncompetitive proteasome inhibition on bortezomib resistance
-
Li X, Wood TE, Sprangers R, Jansen G, Franke NE, Mao X, Wang X, Zhang Y, Verbrugge SE, and Adomat H, et al. (2010) Effect of noncompetitive proteasome inhibition on bortezomib resistance. J Natl Cancer Inst 102:1069-1082.
-
(2010)
J Natl Cancer Inst
, vol.102
, pp. 1069-1082
-
-
Li, X.1
Wood, T.E.2
Sprangers, R.3
Jansen, G.4
Franke, N.E.5
Mao, X.6
Wang, X.7
Zhang, Y.8
Verbrugge, S.E.9
Adomat, H.10
-
24
-
-
13044309479
-
Refined structure of the fkbp12-rapamycin-frb ternary complex at 2.2 a resolution
-
Liang J, Choi J, and Clardy J (1999) Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution. Acta Crystallogr D Biol Crystallogr 55: 736-744.
-
(1999)
Acta Crystallogr D Biol Crystallogr
, vol.55
, pp. 736-744
-
-
Liang, J.1
Choi, J.2
Clardy, J.3
-
26
-
-
0030805604
-
Cyclosporine a is an uncompetitive inhibitor of proteasome activity and prevents nf-kappab activation
-
Meyer S, Kohler NG, and Joly A (1997) Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation. FEBS Lett 413:354-358
-
(1997)
FEBS Lett
, vol.413
, pp. 354-358
-
-
Meyer, S.1
Kohler, N.G.2
Joly, A.3
-
27
-
-
13844280355
-
The axial channel of the 20s proteasome opens upon binding of the pa200 activator
-
Ortega J, Heymann JB, Kajava AV, Ustrell V, Rechsteiner M, and Steven AC (2005) The axial channel of the 20S proteasome opens upon binding of the PA200 activator. J Mol Biol 346:1221-1227.
-
(2005)
J Mol Biol
, vol.346
, pp. 1221-1227
-
-
Ortega, J.1
Heymann, J.B.2
Kajava, A.V.3
Ustrell, V.4
Rechsteiner, M.5
Steven, A.C.6
-
28
-
-
0037018938
-
Nanoenzymology of the 20s proteasome: Proteasomal actions are controlled by the allosteric transition
-
Osmulski PA and Gaczynska M (2002) Nanoenzymology of the 20S proteasome: proteasomal actions are controlled by the allosteric transition. Biochemistry 41: 7047-7053.
-
(2002)
Biochemistry
, vol.41
, pp. 7047-7053
-
-
Osmulski, P.A.1
Gaczynska, M.2
-
29
-
-
68149164657
-
A tetrahedral transition state at the active sites of the 20s proteasome is coupled to opening of the a-ring channel
-
Osmulski PA, Hochstrasser M, and Gaczynska M (2009) A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the a-ring channel. Structure 17:1137-1147.
-
(2009)
Structure
, vol.17
, pp. 1137-1147
-
-
Osmulski, P.A.1
Hochstrasser, M.2
Gaczynska, M.3
-
30
-
-
78649848069
-
The immunoproteasome, the 20s proteasome and the pa28ab proteasome regulator are oxidative-stress-Adaptive proteolytic complexes
-
Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, and Davies KJA (2010) The immunoproteasome, the 20S proteasome and the PA28ab proteasome regulator are oxidative-stress-Adaptive proteolytic complexes. Biochem J 432:585-594.
-
(2010)
Biochem J
, vol.432
, pp. 585-594
-
-
Pickering, A.M.1
Koop, A.L.2
Teoh, C.Y.3
Ermak, G.4
Grune, T.5
Davies, K.J.A.6
-
31
-
-
42949096020
-
Mechanism of gate opening in the 20s proteasome by the proteasomal atpases
-
Rabl J, Smith DM, Yu Y, Chang S-C, Goldberg AL, and Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30: 360-368
-
(2008)
Mol Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.-C.4
Goldberg, A.L.5
Cheng, Y.6
-
32
-
-
11844287006
-
Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors
-
Rechsteiner M and Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27-33.
-
(2005)
Trends Cell Biol
, vol.15
, pp. 27-33
-
-
Rechsteiner, M.1
Hill, C.P.2
-
33
-
-
28444452611
-
Atp binding to pan or the 26s atpases causes association with the 20s proteasome, gate opening, and translocation of unfolded proteins
-
Smith DM, Kafri G, Cheng Y, Ng D, Walz T, and Goldberg AL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol Cell 20:687-698
-
(2005)
Mol Cell
, vol.20
, pp. 687-698
-
-
Smith, D.M.1
Kafri, G.2
Cheng, Y.3
Ng, D.4
Walz, T.5
Goldberg, A.L.6
-
34
-
-
33645473812
-
Allosteric regulators of the proteasome: Potential drugs and a novel approach for drug design
-
Tan X, Osmulski PA, and Gaczynska M (2006) Allosteric regulators of the proteasome: potential drugs and a novel approach for drug design. Curr Med Chem 13:155-165.
-
(2006)
Curr Med Chem
, vol.13
, pp. 155-165
-
-
Tan, X.1
Osmulski, P.A.2
Gaczynska, M.3
-
35
-
-
0036191586
-
Structure determination of the constitutive 20s proteasome from bovine liver at 2.75 a resolution
-
Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, and Tsukihara T (2002) Structure determination of the constitutive 20S proteasome from bovine liver at 2.75 A resolution. J Biochem 131:171-173.
-
(2002)
J Biochem
, vol.131
, pp. 171-173
-
-
Unno, M.1
Mizushima, T.2
Morimoto, Y.3
Tomisugi, Y.4
Tanaka, K.5
Yasuoka, N.6
Tsukihara, T.7
-
36
-
-
18144399578
-
Mtor-targeted therapy of cancer with rapamycin derivatives
-
Vignot S, Faivre S, Aguirre D, and Raymond E (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525-537.
-
(2005)
Ann Oncol
, vol.16
, pp. 525-537
-
-
Vignot, S.1
Faivre, S.2
Aguirre, D.3
Raymond, E.4
-
37
-
-
0034597824
-
Structural basis for the activation of 20s proteasomes by 11s regulators
-
Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, and Hill CP (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115-120.
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
Masters, E.I.2
Kramer, L.3
Knowlton, J.R.4
Yao, Y.5
Wang, C.C.6
Hill, C.P.7
|