-
3
-
-
0003692531
-
-
B.J. Berne, G. Ciccotti, D.F. Coker, World Scientific Singapore (Chapter 16)
-
G. Mills, H. Jónsson, and K.W. Jacobsen B.J. Berne, G. Ciccotti, D.F. Coker, Classical and Quantum Dynamics in Condensed Phase Simulations 1998 World Scientific Singapore (Chapter 16)
-
(1998)
Classical and Quantum Dynamics in Condensed Phase Simulations
-
-
Mills, G.1
Jónsson, H.2
Jacobsen, K.W.3
-
11
-
-
84863241636
-
-
D. Sgeppard, P. Xiao, W. Chemelewski, D. Johnson, and G. Henkelman J. Chem. Phys. 136 2012 074103
-
(2012)
J. Chem. Phys.
, vol.136
, pp. 074103
-
-
Sgeppard, D.1
Xiao, P.2
Chemelewski, W.3
Johnson, D.4
Henkelman, G.5
-
27
-
-
12144260487
-
-
F. Shimojo, S. Kodiyalam, I. Ebbsjo, R.K. Kalia, A. Nakano, and P. Vashishta Phys. Rev. B 70 2004 184111
-
(2004)
Phys. Rev. B
, vol.70
, pp. 184111
-
-
Shimojo, F.1
Kodiyalam, S.2
Ebbsjo, I.3
Kalia, R.K.4
Nakano, A.5
Vashishta, P.6
-
32
-
-
0001373882
-
-
F. Shimojo, I. Ebbsjo, R.K. Kalia, A. Nakano, J.P. Rino, and P. Vashishta Phys. Rev. Lett. 84 2000 3338
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 3338
-
-
Shimojo, F.1
Ebbsjo, I.2
Kalia, R.K.3
Nakano, A.4
Rino, J.P.5
Vashishta, P.6
-
34
-
-
0038766888
-
-
Phys. Rev. B 65 2002 224115 Phys. Rev. Lett. 90 2003 049604
-
M. Catti Phys. Rev. Lett. 87 2001 035504 Phys. Rev. B 65 2002 224115 Phys. Rev. Lett. 90 2003 049604
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 035504
-
-
Catti, M.1
-
36
-
-
0242362633
-
-
Phys. Rev. Lett. 94 2005 225501
-
M.S. Miao, and W.R.L. Lambrecht Phys. Rev. B 68 2003 092103 Phys. Rev. Lett. 94 2005 225501
-
(2003)
Phys. Rev. B
, vol.68
, pp. 092103
-
-
Miao, M.S.1
Lambrecht, W.R.L.2
-
37
-
-
3042792822
-
-
J.M. Perez-Mato, M. Aroyo, C. Capillas, P. Blaha, and K. Schwarz Phys. Rev. Lett. 90 2003 049603
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 049603
-
-
Perez-Mato, J.M.1
Aroyo, M.2
Capillas, C.3
Blaha, P.4
Schwarz, K.5
-
38
-
-
33644519034
-
-
D.M. Hatch, H.T. Stokes, J. Dong, J. Gunter, H. Wang, and J.P. Lewis Phys. Rev. B 71 2005 184109
-
(2005)
Phys. Rev. B
, vol.71
, pp. 184109
-
-
Hatch, D.M.1
Stokes, H.T.2
Dong, J.3
Gunter, J.4
Wang, H.5
Lewis, J.P.6
-
40
-
-
23244460838
-
-
J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais Phys. Rev. B 46 1992 6671
-
(1992)
Phys. Rev. B
, vol.46
, pp. 6671
-
-
Perdew, J.P.1
Chevary, J.A.2
Vosko, S.H.3
Jackson, K.A.4
Pederson, M.R.5
Singh, D.J.6
Fiolhais, C.7
-
45
-
-
0034670791
-
-
J. Serrano, A. Rubio, E. Hernández, A. Muñoz, and A. Mujica Phys. Rev. B 62 2000 16612
-
(2000)
Phys. Rev. B
, vol.62
, pp. 16612
-
-
Serrano, J.1
Rubio, A.2
Hernández, E.3
Muñoz, A.4
Mujica, A.5
-
47
-
-
0000637393
-
-
W. Shan, B.D. Little, A.J. Fischer, J.J. Song, B. Goldenberg, W.G. Perry, M.D. Bremser, and R.F. Davis Phys. Rev. B 54 1996 16369
-
(1996)
Phys. Rev. B
, vol.54
, pp. 16369
-
-
Shan, W.1
Little, B.D.2
Fischer, A.J.3
Song, J.J.4
Goldenberg, B.5
Perry, W.G.6
Bremser, M.D.7
Davis, R.F.8
-
49
-
-
84879072813
-
-
Pt = 14.0 GPa in a four-atom cell. All the electronic structure calculations were carried out with the projector augmented wave (PAW) method as implemented in the VASP code. The PW91 GGA exchange-correlation functional was used in the VC-NEB and G-SSNEB calculations at the transition pressure, with a plane-wave cutoffs of 450 eV and a 6×6×4Γ-centered Monkhorst-Pack k-point grids. 57 images and the climbing image NEB were implemented in both the VC-NEB and G-SSNEB calculations with no rotation-avoiding technique. The phase transition barrier for the VC-NEB calculation is 0.265 eV/formula and the G-SSNEB method gives the same barrier. The corresponding enthalpy of h-MgO metastable structure from the VC-NEB method is 0.12 eV/formula, which is close to 0.13 eV/formula reported in Ref. [28].
-
Pt = 14.0 GPa in a four-atom cell. All the electronic structure calculations were carried out with the projector augmented wave (PAW) method as implemented in the VASP code. The PW91 GGA exchange-correlation functional was used in the VC-NEB and G-SSNEB calculations at the transition pressure, with a plane-wave cutoffs of 450 eV and a 6×6×4Γ-centered Monkhorst-Pack k-point grids. 57 images and the climbing image NEB were implemented in both the VC-NEB and G-SSNEB calculations with no rotation-avoiding technique. The phase transition barrier for the VC-NEB calculation is 0.265 eV/formula and the G-SSNEB method gives the same barrier. The corresponding enthalpy of h-MgO metastable structure from the VC-NEB method is 0.12 eV/formula, which is close to 0.13 eV/formula reported in Ref. [28].
-
-
-
-
50
-
-
84876702416
-
-
C.H. Hu, A.R. Oganov, Q. Zhu, G.R. Qian, A.O. Lyakhov, and H.Y. Zhou Phys. Rev. Lett. 110 2013 165504
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 165504
-
-
Hu, C.H.1
Oganov, A.R.2
Zhu, Q.3
Qian, G.R.4
Lyakhov, A.O.5
Zhou, H.Y.6
-
54
-
-
78049390982
-
-
X.F. Zhou, G.R. Qian, X. Dong, L.X. Zhang, Y.J. Tian, and H.T. Wang Phys. Rev. B 82 2010 134126
-
(2010)
Phys. Rev. B
, vol.82
, pp. 134126
-
-
Zhou, X.F.1
Qian, G.R.2
Dong, X.3
Zhang, L.X.4
Tian, Y.J.5
Wang, H.T.6
-
57
-
-
33749239108
-
-
S.E. Boulfelfel, D. Zahn, O. Hochrein, Y. Grin, and S. Leoni Phys. Rev. B 74 2006 094106
-
(2006)
Phys. Rev. B
, vol.74
, pp. 094106
-
-
Boulfelfel, S.E.1
Zahn, D.2
Hochrein, O.3
Grin, Y.4
Leoni, S.5
|