메뉴 건너뛰기




Volumn 14, Issue 2, 2013, Pages 105-124

A comparative analysis of classification algorithms in data mining for accuracy, speed and robustness

Author keywords

Classification; Data mining; Mining methods and algorithms

Indexed keywords


EID: 84878848984     PISSN: 1385951X     EISSN: 15737667     Source Type: Journal    
DOI: 10.1007/s10799-012-0135-8     Document Type: Article
Times cited : (37)

References (66)
  • 1
    • 68349154502 scopus 로고    scopus 로고
    • A comparison of fraud cues and classification methods for fake escrow website detection
    • Abbasi A, Chen H (2009) A comparison of fraud cues and classification methods for fake escrow website detection. Inf Technol Manage 10(2-3): 83-101.
    • (2009) Inf Technol Manage , vol.10 , Issue.2-3 , pp. 83-101
    • Abbasi, A.1    Chen, H.2
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1): 37-66.
    • (1991) Mach Learn , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 3
    • 78651422884 scopus 로고    scopus 로고
    • Artificial immune clonal selection classification algorithms for classifying malware and benign processes using API call sequences
    • Al-Sheshtawi KA, Abdul-Kader HM, Ismail NA (2010) Artificial immune clonal selection classification algorithms for classifying malware and benign processes using API call sequences. Int J Comput Sci Netw Secur 10(4): 31-39.
    • (2010) Int J Comput Sci Netw Secur , vol.10 , Issue.4 , pp. 31-39
    • Al-Sheshtawi, K.A.1    Abdul-Kader, H.M.2    Ismail, N.A.3
  • 5
    • 77949642830 scopus 로고    scopus 로고
    • The choice of the best attribute selection measure in decision tree induction
    • Badulescu LA (2007) The choice of the best attribute selection measure in decision tree induction. Ann Univ Craiova Math Comp Sci Ser 34(1): 88-93.
    • (2007) Ann Univ Craiova Math Comp Sci Ser , vol.34 , Issue.1 , pp. 88-93
    • Badulescu, L.A.1
  • 6
    • 0000255880 scopus 로고    scopus 로고
    • A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables
    • Polkowski L, Skowron A (eds) Rough sets in knowledge discovery: methodology and applications
    • Bazan JG (1998) A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski L, Skowron A (eds) Rough sets in knowledge discovery: methodology and applications. Physica-Verlag, Heidelberg, pp 321-365.
    • (1998) Physica-Verlag, Heidelberg , pp. 321-365
    • Bazan, J.G.1
  • 7
    • 84957798678 scopus 로고    scopus 로고
    • RSES and RSESlib - A collection of tools for rough set computations
    • Ziarko W, Yao Y (eds) Proceedings of the 2nd international conference on rough sets and current trends in computing (RSCTC'2000). Springer, Berlin
    • Bazan JG, Szczuka M (2001) RSES and RSESlib - A collection of tools for rough set computations. In: Ziarko W, Yao Y (eds) Proceedings of the 2nd international conference on rough sets and current trends in computing (RSCTC'2000). Lecture Notes in Artificial Intelligence 2005. Springer, Berlin, pp 106-113.
    • (2001) Lecture Notes in Artificial Intelligence 2005 , pp. 106-113
    • Bazan, J.G.1    Szczuka, M.2
  • 9
    • 0002235173 scopus 로고
    • A method of choosing multiway partitions for classification and decision trees
    • Bigss D, Ville B, Suen E (1991) A method of choosing multiway partitions for classification and decision trees. J Appl Stat 18(1): 49-62.
    • (1991) J Appl Stat , vol.18 , Issue.1 , pp. 49-62
    • Bigss, D.1    Ville, B.2    Suen, E.3
  • 11
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: using IBL and meta-learning on accuracy and time results
    • Brazdil PB, Soares C, Costa JP (2003) Ranking learning algorithms: using IBL and meta-learning on accuracy and time results. Mach Learn 50(3): 251-277.
    • (2003) Mach Learn , vol.50 , Issue.3 , pp. 251-277
    • Brazdil, P.B.1    Soares, C.2    Costa, J.P.3
  • 13
    • 78751485495 scopus 로고    scopus 로고
    • Clonal selection theory & CLONALG: the clonal selection classification algorithm (CSCA)
    • Swinburne University of Technology (SUT), Australia. Available via Accessed on 15 August 2011
    • Brownlee J (2005) Clonal selection theory & CLONALG: the clonal selection classification algorithm (CSCA). Technical Report 2-02, Centre for Intelligent Systems and Complex Processes (CISCP), Swinburne University of Technology (SUT), Australia. Available via http://citeseerx. ist. psu. edu/viewdoc/download?doi=10. 1. 1. 70. 2821&rep=rep1&type=pdf. Accessed on 15 August 2011.
    • (2005) Technical Report 2-02, Centre for Intelligent Systems and Complex Processes (CISCP)
    • Brownlee, J.1
  • 14
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • Castro LN, Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Computat 6(3): 239-251.
    • (2002) IEEE Trans Evol Computat , vol.6 , Issue.3 , pp. 239-251
    • Castro, L.N.1    Zuben, F.J.2
  • 15
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Software available at Accessed on 29 August 2011
    • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3): 27: 1-27. Software available at http://www. csie. ntu. edu. tw/~cjlin/libsvm. Accessed on 29 August 2011.
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 18
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3): 273-297.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 22
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2): 337-407.
    • (2000) Ann Stat , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 30
    • 33746924562 scopus 로고    scopus 로고
    • The effect of principal component analysis on machine learning accuracy with high dimensional spectral data
    • Howley T, Madden MG, OConnell ML, Ryder AG (2006) The effect of principal component analysis on machine learning accuracy with high dimensional spectral data. Knowl-Based Syst 19(5): 363-370.
    • (2006) Knowl-Based Syst , vol.19 , Issue.5 , pp. 363-370
    • Howley, T.1    Madden, M.G.2    OConnell, M.L.3    Ryder, A.G.4
  • 31
    • 49349117698 scopus 로고    scopus 로고
    • Mining supervised classification performance studies: a meta-analytic investigation
    • Jamain A, Hand DJ (2008) Mining supervised classification performance studies: a meta-analytic investigation. J Classif 25(1): 87-112.
    • (2008) J Classif , vol.25 , Issue.1 , pp. 87-112
    • Jamain, A.1    Hand, D.J.2
  • 34
    • 1642280141 scopus 로고    scopus 로고
    • On data and algorithms: understanding inductive performance
    • Kalousis A, Gama J, Hilario M (2004) On data and algorithms: understanding inductive performance. Mach Learn 54(3): 275-312.
    • (2004) Mach Learn , vol.54 , Issue.3 , pp. 275-312
    • Kalousis, A.1    Gama, J.2    Hilario, M.3
  • 35
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: a survey and empirical demonstration
    • Keogh E, Kasetty S (2002) On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min Knowl Disc 7(4): 349-371.
    • (2002) Data Min Knowl Disc , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 37
    • 85008014387 scopus 로고    scopus 로고
    • Some effective techniques for Naive Bayes text classification
    • Kim SB, Han KS, Rim HC, Myaeng SH (2006) Some effective techniques for Naive Bayes text classification. IEEE Trans Knowl Data Eng 18(11): 1457-1466.
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.11 , pp. 1457-1466
    • Kim, S.B.1    Han, K.S.2    Rim, H.C.3    Myaeng, S.H.4
  • 38
    • 53849090973 scopus 로고    scopus 로고
    • Reexamining the impact of information technology investment on productivity using regression tree and multivariate adaptive regression splines (MARS)
    • Ko M, Osei-Bryson KM (2008) Reexamining the impact of information technology investment on productivity using regression tree and multivariate adaptive regression splines (MARS). Inf Technol Manage 9(4): 285-299.
    • (2008) Inf Technol Manage , vol.9 , Issue.4 , pp. 285-299
    • Ko, M.1    Osei-Bryson, K.M.2
  • 40
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T (1990) The self-organizing map. Proc IEEE 78(9): 1464-1480.
    • (1990) Proc IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 41
    • 84878879131 scopus 로고
    • LVQ-PK: The learning vector quantization package version 3. 1
    • Helsinki University of Technology Laboratory of Computer and Information Science, Finland. Available via Accessed on 27 March 2012
    • Kohonen T, Hynninen J, Kangas J, Laaksonen J, Torkkola K (1995) LVQ-PK: the learning vector quantization package version 3. 1. Technical Report. Helsinki University of Technology Laboratory of Computer and Information Science, Finland. Available via http://www. cis. hut. fi/research/lvq_pak/lvq_doc. txt. Accessed on 27 March 2012.
    • (1995) Technical Report
    • Kohonen, T.1    Hynninen, J.2    Kangas, J.3    Laaksonen, J.4    Torkkola, K.5
  • 42
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessie S, van Houwelingen JC (1992) Ridge estimators in logistic regression. Appl Stat 41(1): 191-201.
    • (1992) Appl Stat , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    van Houwelingen, J.C.2
  • 43
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim T-S, Loh W-Y, Shih Y-S (2000) A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach Learn 40(3): 203-228.
    • (2000) Mach Learn , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 44
    • 0031312210 scopus 로고    scopus 로고
    • Split selection methods for classification trees
    • Loh WY, Shih YS (1997) Split selection methods for classification trees. Stat Sin 7(4): 815-840.
    • (1997) Stat Sin , vol.7 , Issue.4 , pp. 815-840
    • Loh, W.Y.1    Shih, Y.S.2
  • 48
    • 27744565978 scopus 로고
    • Rough sets
    • Pawlak Z (1982) Rough sets. Int J Parallel Prog 11(5): 341-356.
    • (1982) Int J Parallel Prog , vol.11 , Issue.5 , pp. 341-356
    • Pawlak, Z.1
  • 53
    • 0001941003 scopus 로고
    • Comparing connectionist and symbolic learning methods
    • S. J. Hanson, G. A. Drastal, and R. L. Rivest (Eds.), Cambridge: MIT Press
    • Quinlan JR (1994) Comparing connectionist and symbolic learning methods. In: Hanson SJ, Drastal GA, Rivest RL (eds) Computational learning theory and natural learning systems: constraints and prospect. MIT Press, Cambridge, pp 445-456.
    • (1994) Computational Learning Theory and Natural Learning Systems: Constraints and Prospect , pp. 445-456
    • Quinlan, J.R.1
  • 54
    • 0000646059 scopus 로고
    • Rumelhart DE, McClelland JL, and the PDP research group (eds) Parallel distributed processing: explorations in the microstructure of cognition 1: foundations. MIT Press, Cambridge
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL, and the PDP research group (eds) Parallel distributed processing: explorations in the microstructure of cognition 1: foundations. MIT Press, Cambridge, pp 318-362.
    • (1986) Learning internal representations by error propagation , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 55
    • 84878873711 scopus 로고    scopus 로고
    • Department of Mathematics, National Chung Cheng University, Taiwan. Available via Accessed on 15 August 2011
    • Shih YS (2004) QUEST user manual. Department of Mathematics, National Chung Cheng University, Taiwan. Available via http://www. stat. wisc. edu/~loh/treeprogs/quest/questman. pdf. Accessed on 15 August 2011.
    • (2004) QUEST user manual
    • Shih, Y.S.1
  • 56
    • 84878831496 scopus 로고    scopus 로고
    • SPSS Available via Accessed on 9 April 2012
    • SPSS (2012) CHAID and exhaustive CHAID algorithms. Available via ftp://ftp. software. ibm. com/software/analytics/spss/support/Stats/Docs/Statistics/Algorithms/13. 0/TREE-CHAID. pdf. Accessed on 9 April 2012.
    • (2012) CHAID and exhaustive CHAID algorithms
  • 57
    • 67349169465 scopus 로고    scopus 로고
    • Multiclass MTS for simultaneous feature selection and classification
    • Su CT, Hsiao YH (2009) Multiclass MTS for simultaneous feature selection and classification. IEEE Trans Knowl Data Eng 21(2): 192-204.
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.2 , pp. 192-204
    • Su, C.T.1    Hsiao, Y.H.2
  • 58
    • 84878871405 scopus 로고    scopus 로고
    • UCI Machine Learning Repository Available via Accessed on 10 December 2010
    • UCI Machine Learning Repository (2010) Available via http://archive. ics. uci. edu/ml. Accessed on 10 December 2010.
    • (2010)
  • 59
    • 0013359964 scopus 로고    scopus 로고
    • M. Sc. Thesis, Mississippi State University Department of Computer Science, USA. Available via Accessed on 15 August 2011
    • Watkins AB (2001) AIRS: a resource limited artificial immune classifier. M. Sc. Thesis, Mississippi State University Department of Computer Science, USA. Available via http://www. cse. msstate. edu/~andrew/research/publications/watkins_thesis. pdf. Accessed on 15 August 2011.
    • (2001) AIRS: A resource limited artificial immune classifier
    • Watkins, A.B.1
  • 61
    • 3543121725 scopus 로고    scopus 로고
    • Artificial immune recognition system (AIRS): an immune-inspired supervised learning algorithm
    • Watkins AB, Timmis J, Boggess L (2004) Artificial immune recognition system (AIRS): an immune-inspired supervised learning algorithm. Genet Program Evolvable Mach 5(3): 291-317.
    • (2004) Genet Program Evolvable Mach , vol.5 , Issue.3 , pp. 291-317
    • Watkins, A.B.1    Timmis, J.2    Boggess, L.3
  • 62
    • 84878848831 scopus 로고    scopus 로고
    • WEKA Available via Accessed on 15 August 2011
    • WEKA (2011) Classification algorithms. Available via http://wekaclassalgos. sourceforge. net/. Accessed on 15 August 2011.
    • (2011) Classification algorithms
  • 65
    • 35648962940 scopus 로고    scopus 로고
    • To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence estimators
    • Yang Y, Webb GI, Cerquides J, Korb KB, Boughton J, Ting KM (2007) To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence estimators. IEEE Trans Knowl Data Eng 19(12): 1652-1664.
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.12 , pp. 1652-1664
    • Yang, Y.1    Webb, G.I.2    Cerquides, J.3    Korb, K.B.4    Boughton, J.5    Ting, K.M.6
  • 66
    • 0040431304 scopus 로고    scopus 로고
    • Data mining for network intrusion detection: a comparison of alternative methods
    • Zhu D, Premkumar G, Zhang X, Chu C-H (2001) Data mining for network intrusion detection: a comparison of alternative methods. Decis Sci 32(4): 635-660.
    • (2001) Decis Sci , vol.32 , Issue.4 , pp. 635-660
    • Zhu, D.1    Premkumar, G.2    Zhang, X.3    Chu, C.-H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.