메뉴 건너뛰기




Volumn 116, Issue , 2013, Pages 355-366

The best-so-far ABC with multiple patrilines for clustering problems

Author keywords

Best so far ABC; Clustering; Distributed environments; Multiple patrilines; Optimization; Parallel computing; Swarm intelligence

Indexed keywords

BEST-SO-FAR ABC; CLUSTERING; DISTRIBUTED ENVIRONMENTS; MULTIPLE PATRILINES; SWARM INTELLIGENCE;

EID: 84878496046     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.02.047     Document Type: Article
Times cited : (26)

References (46)
  • 1
    • 77956061119 scopus 로고    scopus 로고
    • Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft
    • Xu C., Duan H. Artificial bee colony (ABC) optimized edge potential function (EPF) approach to target recognition for low-altitude aircraft. Pattern Recognition Lett. 2010, 31:1759-1772.
    • (2010) Pattern Recognition Lett. , vol.31 , pp. 1759-1772
    • Xu, C.1    Duan, H.2
  • 2
    • 60249099439 scopus 로고    scopus 로고
    • A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method
    • Yeh W.-C., Chang W.-W., Chung Y.Y. A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method. Expert Syst. Appl. 2009, 36:8204-8211.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 8204-8211
    • Yeh, W.-C.1    Chang, W.-W.2    Chung, Y.Y.3
  • 3
    • 12344292547 scopus 로고    scopus 로고
    • Assigning cells to switches in mobile networks using an ant colony optimization heuristic
    • Fournier J.R.L., Pierre S. Assigning cells to switches in mobile networks using an ant colony optimization heuristic. Comput. Commun. 2005, 28:65-73.
    • (2005) Comput. Commun. , vol.28 , pp. 65-73
    • Fournier, J.R.L.1    Pierre, S.2
  • 4
    • 9344232811 scopus 로고    scopus 로고
    • Ant colony optimization techniques for the vehicle routing problem
    • Bella J.E., McMullen P.R. Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inf. 2004, 18:41-48.
    • (2004) Adv. Eng. Inf. , vol.18 , pp. 41-48
    • Bella, J.E.1    McMullen, P.R.2
  • 6
    • 77957170615 scopus 로고    scopus 로고
    • Quantitative prediction of MHC-II binding affinity using particle swarm optimization
    • Zhang W., Liu J., Niu Y. Quantitative prediction of MHC-II binding affinity using particle swarm optimization. Artif. Intell. Med. 2010, 50:127-132.
    • (2010) Artif. Intell. Med. , vol.50 , pp. 127-132
    • Zhang, W.1    Liu, J.2    Niu, Y.3
  • 7
    • 42749089472 scopus 로고    scopus 로고
    • Machine learning based switching model for electricity load forecasting
    • Fan S., Chen L., Lee W.-J. Machine learning based switching model for electricity load forecasting. Energy Convers. Manage. 2008, 49:1331-1344.
    • (2008) Energy Convers. Manage. , vol.49 , pp. 1331-1344
    • Fan, S.1    Chen, L.2    Lee, W.-J.3
  • 8
    • 77957257328 scopus 로고    scopus 로고
    • Application of machine learning techniques to analyse student interactions and improve the collaboration process
    • Anaya A.R., Boticario J.G. Application of machine learning techniques to analyse student interactions and improve the collaboration process. Expert Syst. Appl. 2011, 38:1171-1181.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 1171-1181
    • Anaya, A.R.1    Boticario, J.G.2
  • 9
    • 29144443500 scopus 로고    scopus 로고
    • Adherence clustering: an efficient method for mining market-basket clusters
    • Yun C.-H., Chuang K.-T., Chen M.-S. Adherence clustering: an efficient method for mining market-basket clusters. Inf. Syst. 2006, 31:170-186.
    • (2006) Inf. Syst. , vol.31 , pp. 170-186
    • Yun, C.-H.1    Chuang, K.-T.2    Chen, M.-S.3
  • 10
    • 34548840533 scopus 로고    scopus 로고
    • Adaptive clustering in wireless sensor networks by mining sensor energy data
    • Ci S., Guizani M., Sharif H. Adaptive clustering in wireless sensor networks by mining sensor energy data. Comput. Commun. 2007, 30:2968-2975.
    • (2007) Comput. Commun. , vol.30 , pp. 2968-2975
    • Ci, S.1    Guizani, M.2    Sharif, H.3
  • 11
    • 41149178180 scopus 로고    scopus 로고
    • Spatial defect pattern recognition on semiconductor wafers using model-based clustering and Bayesian inference
    • Yuan T., Kuo W. Spatial defect pattern recognition on semiconductor wafers using model-based clustering and Bayesian inference. Eur. J. Oper. Res. 2008, 190:228-240.
    • (2008) Eur. J. Oper. Res. , vol.190 , pp. 228-240
    • Yuan, T.1    Kuo, W.2
  • 12
    • 77956479325 scopus 로고    scopus 로고
    • Long distance bigram models applied to word clustering
    • Bassiou N., Kotropoulos C. Long distance bigram models applied to word clustering. Pattern Recognition 2011, 44:145-158.
    • (2011) Pattern Recognition , vol.44 , pp. 145-158
    • Bassiou, N.1    Kotropoulos, C.2
  • 13
    • 53749085581 scopus 로고    scopus 로고
    • Automatic image pixel clustering with an improved differential evolution
    • Das S., Konar A. Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 2009, 9:226-236.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 226-236
    • Das, S.1    Konar, A.2
  • 14
    • 77956480010 scopus 로고    scopus 로고
    • Color image segmentation using histogram thresholding-Fuzzy C-means hybrid approach
    • Tan K.S., Isa N.A.M. Color image segmentation using histogram thresholding-Fuzzy C-means hybrid approach. Pattern Recognition 2011, 44:1-15.
    • (2011) Pattern Recognition , vol.44 , pp. 1-15
    • Tan, K.S.1    Isa, N.A.M.2
  • 15
    • 34248566921 scopus 로고    scopus 로고
    • Intelligent spider for information retrieval to support mining-based price prediction for online auctioning
    • Chan C.-C.H. Intelligent spider for information retrieval to support mining-based price prediction for online auctioning. Expert Syst. Appl. 2008, 34:347-356.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 347-356
    • Chan, C.-C.H.1
  • 16
    • 48649102567 scopus 로고    scopus 로고
    • An intelligent information retrieval agent
    • Dhanapal R. An intelligent information retrieval agent. Knowl. Based Syst. 2008, 21:466-470.
    • (2008) Knowl. Based Syst. , vol.21 , pp. 466-470
    • Dhanapal, R.1
  • 17
    • 77954144998 scopus 로고    scopus 로고
    • Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values
    • Bhattacharya A., De R.K. Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values. J. Biomed. Inf. 2010, 43:560-568.
    • (2010) J. Biomed. Inf. , vol.43 , pp. 560-568
    • Bhattacharya, A.1    De, R.K.2
  • 18
    • 77956339187 scopus 로고    scopus 로고
    • Using Gene Ontology annotations in exploratory microarray clustering to understand cancer etiology
    • Macintyre G., Bailey J., Gustafsson D., Haviv I., Kowalczyk A. Using Gene Ontology annotations in exploratory microarray clustering to understand cancer etiology. Pattern Recognition Lett. 2010, 31:2138-2146.
    • (2010) Pattern Recognition Lett. , vol.31 , pp. 2138-2146
    • Macintyre, G.1    Bailey, J.2    Gustafsson, D.3    Haviv, I.4    Kowalczyk, A.5
  • 19
    • 0037530529 scopus 로고    scopus 로고
    • K-harmonic means-a data clustering algorithm
    • Technical Report HPL-1999-124, Hewlett-Packard Laboratories
    • B. Zhang, M. Hsu, U. Dayal, K-harmonic means-a data clustering algorithm, Technical Report HPL-1999-124, Hewlett-Packard Laboratories, 1999.
    • (1999)
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 20
    • 3543074169 scopus 로고    scopus 로고
    • K-harmonic means
    • Spatial and Spatio-Temporal Data Mining (TSDM2000), Lyon, France, September 12
    • B. Zhang, M. Hsu, U. Dayal, K-harmonic means, in: International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining (TSDM2000), Lyon, France, September 12, 2000.
    • (2000) International Workshop on Temporal
    • Zhang, B.1    Hsu, M.2    Dayal, U.3
  • 21
    • 0026359031 scopus 로고
    • A simulated annealing algorithm for the clustering problem
    • Selim S.Z., Alsultan K. A simulated annealing algorithm for the clustering problem. Pattern Recognition 1991, 24:1003-1008.
    • (1991) Pattern Recognition , vol.24 , pp. 1003-1008
    • Selim, S.Z.1    Alsultan, K.2
  • 22
    • 0033882604 scopus 로고    scopus 로고
    • A tabu-search-based heuristic for clustering
    • Sung C.S., Jin H.W. A tabu-search-based heuristic for clustering. Pattern Recognition 2000, 33:849-858.
    • (2000) Pattern Recognition , vol.33 , pp. 849-858
    • Sung, C.S.1    Jin, H.W.2
  • 23
    • 0036798199 scopus 로고    scopus 로고
    • An evolutionary technique based on K-means algorithm for optimal clustering in RN
    • Bandyopadhyay S., Maulik U. An evolutionary technique based on K-means algorithm for optimal clustering in RN. Inf. Sci. 2002, 146:221-237.
    • (2002) Inf. Sci. , vol.146 , pp. 221-237
    • Bandyopadhyay, S.1    Maulik, U.2
  • 25
    • 33646087885 scopus 로고    scopus 로고
    • An aggregated clustering approach using multi-ant colonies algorithms
    • Yang Y., Kamel M.S. An aggregated clustering approach using multi-ant colonies algorithms. Pattern Recognition 2006, 39:1278-1289.
    • (2006) Pattern Recognition , vol.39 , pp. 1278-1289
    • Yang, Y.1    Kamel, M.S.2
  • 26
    • 37349047955 scopus 로고    scopus 로고
    • A hybridized approach to data clustering
    • Kao Y.-T., Zahara E., Kao I.-W. A hybridized approach to data clustering. Expert Syst. Appl. 2008, 34:1754-1762.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1754-1762
    • Kao, Y.-T.1    Zahara, E.2    Kao, I.-W.3
  • 27
    • 64049093707 scopus 로고    scopus 로고
    • An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization
    • Yang F., Sun T., Zhang C. An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization. Expert Syst. Appl. 2009, 36:9847-9852.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9847-9852
    • Yang, F.1    Sun, T.2    Zhang, C.3
  • 28
    • 70350106756 scopus 로고    scopus 로고
    • An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
    • Niknam T., Amiri B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 2010, 10:183-197.
    • (2010) Appl. Soft Comput. , vol.10 , pp. 183-197
    • Niknam, T.1    Amiri, B.2
  • 29
    • 78751612006 scopus 로고    scopus 로고
    • The Best-so-far selection in Artificial Bee Colony algorithm
    • Banharnsakun A., Achalakul T., Sirinaovakul B. The Best-so-far selection in Artificial Bee Colony algorithm. Appl. Soft Comput. 2011, 11:2888-2901.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2888-2901
    • Banharnsakun, A.1    Achalakul, T.2    Sirinaovakul, B.3
  • 30
    • 35148827874 scopus 로고    scopus 로고
    • An idea based on honey bee swarm for numerical optimization
    • Technical Report-TR06, Engineering Faculty, Computer Engineering Department, Erciyes University, Turkey
    • D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Engineering Faculty, Computer Engineering Department, Erciyes University, Turkey, 2005.
    • (2005)
    • Karaboga, D.1
  • 31
    • 27744441939 scopus 로고    scopus 로고
    • The use of waggle dance information by honey bees throughout their foraging careers
    • Biesmeijer J.C., Seeley T.D. The use of waggle dance information by honey bees throughout their foraging careers. Behav. Ecol. Sociobiol. 2005, 59:133-142.
    • (2005) Behav. Ecol. Sociobiol. , vol.59 , pp. 133-142
    • Biesmeijer, J.C.1    Seeley, T.D.2
  • 32
    • 77957901422 scopus 로고    scopus 로고
    • A novel clustering approach: Artificial Bee Colony (ABC) algorithm
    • Karaboga D., Ozturk C. A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 2011, 11:652-657.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 652-657
    • Karaboga, D.1    Ozturk, C.2
  • 33
    • 77950189133 scopus 로고    scopus 로고
    • An Artificial Bee Colony approach for clustering
    • Zhang C., Ouyang D., Ning J. An Artificial Bee Colony approach for clustering. Expert Syst. Appl. 2010, 37:4761-4767.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4761-4767
    • Zhang, C.1    Ouyang, D.2    Ning, J.3
  • 35
    • 79251594869 scopus 로고    scopus 로고
    • Recruitment-dance signals draw larger audiences when honey bee colonies have multiple patrilines
    • Girard M.B., Mattila H.R., Seeley T.D. Recruitment-dance signals draw larger audiences when honey bee colonies have multiple patrilines. Insectes Soc. 2011, 58:77-86.
    • (2011) Insectes Soc. , vol.58 , pp. 77-86
    • Girard, M.B.1    Mattila, H.R.2    Seeley, T.D.3
  • 40
    • 35148821762 scopus 로고    scopus 로고
    • A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm
    • Karaboga D., Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. J. Global Optim. 2007, 39:459-471.
    • (2007) J. Global Optim. , vol.39 , pp. 459-471
    • Karaboga, D.1    Basturk, B.2
  • 41
    • 84878503464 scopus 로고    scopus 로고
    • UCI repository of machine learning databases [Online], Available
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases [Online], Available: , 1998. http://archive.ics.uci.edu/ml/datasets.html.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 42
    • 80051977308 scopus 로고    scopus 로고
    • Method for failure pattern analysis in disk drive manufacturing
    • Taetragool U., Achalakul T. Method for failure pattern analysis in disk drive manufacturing. Int. J. Comput. Integrated Manuf. 2011, 24:834-846.
    • (2011) Int. J. Comput. Integrated Manuf. , vol.24 , pp. 834-846
    • Taetragool, U.1    Achalakul, T.2
  • 43
    • 49649111138 scopus 로고    scopus 로고
    • A honey-bee mating approach for cluster analysis
    • Fathian M., Amiri B. A honey-bee mating approach for cluster analysis. Int. J. Adv. Manuf. Technol. 2008, 38:809-821.
    • (2008) Int. J. Adv. Manuf. Technol. , vol.38 , pp. 809-821
    • Fathian, M.1    Amiri, B.2
  • 44
    • 67649297303 scopus 로고    scopus 로고
    • A hybrid evolutionary algorithm based on ACO and SA for cluster analysis
    • Niknam T., Olamaie J., Amiri B. A hybrid evolutionary algorithm based on ACO and SA for cluster analysis. J. Appl. Sci. 2008, 8:2695-2702.
    • (2008) J. Appl. Sci. , vol.8 , pp. 2695-2702
    • Niknam, T.1    Olamaie, J.2    Amiri, B.3
  • 46
    • 23944438921 scopus 로고    scopus 로고
    • On the performance of ant-based clustering, design and application of hybrid intelligent systems
    • Handl J., Knowles J., Dorigo M. On the performance of ant-based clustering, design and application of hybrid intelligent systems. Front. Artif. Intell. Appl. 2003, 104:204-213.
    • (2003) Front. Artif. Intell. Appl. , vol.104 , pp. 204-213
    • Handl, J.1    Knowles, J.2    Dorigo, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.