메뉴 건너뛰기




Volumn 43, Issue 4, 2010, Pages 560-568

Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values

Author keywords

Correlation clustering; Functional enrichment; P Value; Transcription factors; Z Score

Indexed keywords

CLUSTERING RESULTS; CLUSTERING SOLUTIONS; CO-REGULATED GENES; CONVENTIONAL METHODS; CORRELATION CLUSTERING; CORRELATION MATRIX; CORRELATION VALUE; DISTANCE-BASED CLUSTERING ALGORITHM; EXPERIMENTAL CONDITIONS; EXPRESSION PROFILE; FUNCTIONAL ENRICHMENT; GENE EXPRESSION DATASETS; MICROSOFT WINDOWS; P-VALUES; SIMILAR PATTERN; VISUAL BASIC; Z-SCORES;

EID: 77954144998     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2010.02.001     Document Type: Article
Times cited : (21)

References (50)
  • 1
    • 77954143279 scopus 로고    scopus 로고
    • Quadratic forms on graphs. In: Proceedings of the 37th STOC
    • Alon N, Makarychev K, Makarychev Y, Naor A. Quadratic forms on graphs. In: Proceedings of the 37th STOC; 2005. p. 634-43.
    • (2005) , pp. 634-43
    • Alon, N.1    Makarychev, K.2    Makarychev, Y.3    Naor, A.4
  • 2
    • 77954145064 scopus 로고    scopus 로고
    • Hierarchical k-means: an algorithm for centroids initialization for k-means
    • Arai K., Barakbah A.R. Hierarchical k-means: an algorithm for centroids initialization for k-means. Rep Fac Sci Eng Saga Univ 2007, 36:25-31.
    • (2007) Rep Fac Sci Eng Saga Univ , vol.36 , pp. 25-31
    • Arai, K.1    Barakbah, A.R.2
  • 7
    • 0021583718 scopus 로고
    • FCM: the fuzzy c-means clustering algorithm
    • Bezdek J.C., Ehrlich R., Full W. FCM: the fuzzy c-means clustering algorithm. Comput Geosci 1984, 10:191-203.
    • (1984) Comput Geosci , vol.10 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 8
    • 44349106021 scopus 로고    scopus 로고
    • Divisive correlation clustering algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles
    • Bhattacharya A., De R.K. Divisive correlation clustering algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles. Bioinformatics 2008, 24(11):1359-1366.
    • (2008) Bioinformatics , vol.24 , Issue.11 , pp. 1359-1366
    • Bhattacharya, A.1    De, R.K.2
  • 13
    • 33947363787 scopus 로고    scopus 로고
    • Evaluation of clustering algorithms for gene expression data
    • Datta S., Datta S. Evaluation of clustering algorithms for gene expression data. BMC Bioinform 2006, 7:s17.
    • (2006) BMC Bioinform , vol.7
    • Datta, S.1    Datta, S.2
  • 16
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy c-means method for clustering microarray data
    • Dembele D., Kastner P. Fuzzy c-means method for clustering microarray data. Bioinformatics 2003, 19:973-980.
    • (2003) Bioinformatics , vol.19 , pp. 973-980
    • Dembele, D.1    Kastner, P.2
  • 17
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • Dunn J.C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 1973, 3:32-57.
    • (1973) J Cybern , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 19
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C., Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 2002, 97:611-631.
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 20
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz G., Levine E., Domany E. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci USA 2000, 12079-12084.
    • (2000) Proc Natl Acad Sci USA , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 21
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons F., Roth F. Judging the quality of gene expression-based clustering methods using gene annotation. Genome Res 2002, 12(10):1574-1581.
    • (2002) Genome Res , vol.12 , Issue.10 , pp. 1574-1581
    • Gibbons, F.1    Roth, F.2
  • 22
  • 26
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • Hartigan J.A. Direct clustering of a data matrix. J Am Stat Assoc 1972, 67(337):123-129.
    • (1972) J Am Stat Assoc , vol.67 , Issue.337 , pp. 123-129
    • Hartigan, J.A.1
  • 27
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of coexpressed genes
    • Heyer L.J., Kruglyak S., Yooseph S. Exploring expression data: Identification and analysis of coexpressed genes. Genome Res 1999, 9:1106-1115.
    • (1999) Genome Res , vol.9 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 31
    • 0022439920 scopus 로고
    • Monte carlo comparison of six hierarchical clustering methods on random data
    • Jain N.C., Indrayan A., Goel L.R. Monte carlo comparison of six hierarchical clustering methods on random data. Pattern Recogn 1986, 19:95-99.
    • (1986) Pattern Recogn , vol.19 , pp. 95-99
    • Jain, N.C.1    Indrayan, A.2    Goel, L.R.3
  • 32
    • 18744364197 scopus 로고    scopus 로고
    • Detecting clusters of different geometrical shapes in microarray gene expression data
    • Kim D.W., Lee K.H., Lee D. Detecting clusters of different geometrical shapes in microarray gene expression data. Bioinformatics 2005, 21(9):1927-1934.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1927-1934
    • Kim, D.W.1    Lee, K.H.2    Lee, D.3
  • 33
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray cancer data: co-clustering genes and conditions
    • Kluger Y., Basri R., Chang J.T., Gerstein M. Spectral biclustering of microarray cancer data: co-clustering genes and conditions. Genome Res 2003, 13(4):703-716.
    • (2003) Genome Res , vol.13 , Issue.4 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 34
    • 70350540769 scopus 로고    scopus 로고
    • Comparison of cluster ensembles methods based on hierarchical clustering
    • Li K., Wang L., Hao L. Comparison of cluster ensembles methods based on hierarchical clustering. Proc Int Conf Comput Intell Natl Comput 2009, 499-502.
    • (2009) Proc Int Conf Comput Intell Natl Comput , pp. 499-502
    • Li, K.1    Wang, L.2    Hao, L.3
  • 35
    • 33947326847 scopus 로고    scopus 로고
    • Metric for measuring the effectiveness of clustering of DNA microarray expression
    • Loganantharaj R., Cheepala S., Clifford J. Metric for measuring the effectiveness of clustering of DNA microarray expression. BMC Bioinform 2006, 7:s5.
    • (2006) BMC Bioinform , vol.7
    • Loganantharaj, R.1    Cheepala, S.2    Clifford, J.3
  • 36
    • 0035014159 scopus 로고    scopus 로고
    • Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters
    • Lukashin A.V., Fuchs R. Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 2001, 17:405-414.
    • (2001) Bioinformatics , vol.17 , pp. 405-414
    • Lukashin, A.V.1    Fuchs, R.2
  • 37
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • Maulik U., Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recogn 2000, 33:1455-1465.
    • (2000) Pattern Recogn , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 39
    • 0242475337 scopus 로고    scopus 로고
    • Kernel hierarchical gene clustering from microarray expression data
    • Qin J., Lewis D.P., Noble W.S. Kernel hierarchical gene clustering from microarray expression data. Bioinformatics 2003, 19:2097-2104.
    • (2003) Bioinformatics , vol.19 , pp. 2097-2104
    • Qin, J.1    Lewis, D.P.2    Noble, W.S.3
  • 40
    • 4444336823 scopus 로고    scopus 로고
    • Genecluster 2.0: an advanced toolset for bioarray analysis
    • Reich M., Ohm K., Angelo M., Tamayo P., Mesirov J.P. Genecluster 2.0: an advanced toolset for bioarray analysis. Bioinformatics 2004, 20:1797-1798.
    • (2004) Bioinformatics , vol.20 , pp. 1797-1798
    • Reich, M.1    Ohm, K.2    Angelo, M.3    Tamayo, P.4    Mesirov, J.P.5
  • 41
    • 36649006642 scopus 로고    scopus 로고
    • Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms
    • Shao J., Tanner S.W., Thompson N., Cheatham T.E. Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 2007, 2:2312-2334.
    • (2007) J Chem Theory Comput , vol.2 , pp. 2312-2334
    • Shao, J.1    Tanner, S.W.2    Thompson, N.3    Cheatham, T.E.4
  • 42
    • 0141506116 scopus 로고    scopus 로고
    • Click and expander: a system for clustering and visualizing gene expression data
    • Sharan R., Maron-Katz A., Shamir R. Click and expander: a system for clustering and visualizing gene expression data. Bioinformatics 2003, 19:1787-1799.
    • (2003) Bioinformatics , vol.19 , pp. 1787-1799
    • Sharan, R.1    Maron-Katz, A.2    Shamir, R.3
  • 43
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • Tanay A., Sharan R., Shamir R. Discovering statistically significant biclusters in gene expression data. Bioinformatics 2002, 18:S136-S144.
    • (2002) Bioinformatics , vol.18
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 45
    • 40049089622 scopus 로고    scopus 로고
    • Scowlp classification: Structural comparison and analysis of protein binding regions
    • Teyra J., Paszkowski-Rogacz M., Anders G., Pisabarro M.T. Scowlp classification: Structural comparison and analysis of protein binding regions. BMC Bioinform 2008, 9:9.
    • (2008) BMC Bioinform , vol.9 , pp. 9
    • Teyra, J.1    Paszkowski-Rogacz, M.2    Anders, G.3    Pisabarro, M.T.4
  • 47
    • 0035999974 scopus 로고    scopus 로고
    • Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees
    • Xu Y., Olman V., Xu D. Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics 2002, 18(4):536-545.
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 536-545
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 48
    • 0036211103 scopus 로고    scopus 로고
    • δ-Clusters: capturing subspace correlation in a large data set. In: Proceedings of the 18th IEEE international conference on data engineering
    • Yang J, Wang W, Wang H, Yu P. δ-Clusters: capturing subspace correlation in a large data set. In: Proceedings of the 18th IEEE international conference on data engineering; 2002. p. 517-28.
    • (2002) , pp. 517-28
    • Yang, J.1    Wang, W.2    Wang, H.3    Yu, P.4
  • 49
    • 84942566876 scopus 로고    scopus 로고
    • In: Proceedings of the third IEEE conference on bioinformatics and bioengineering
    • Yang J, Wang W, Wang H, Yu P. Enhanced biclustering on expression data. In: Proceedings of the third IEEE conference on bioinformatics and bioengineering; 2003. p. 321-27.
    • (2003) Enhanced biclustering on expression data , pp. 321-27
    • Yang, J.1    Wang, W.2    Wang, H.3    Yu, P.4
  • 50
    • 0034858077 scopus 로고    scopus 로고
    • Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cdna microarrays
    • Zhang Y., Luxon B.A., Casola A., Garofalo R.P., Jamaluddin M., Brasier A.R. Expression of respiratory syncytial virus-induced chemokine gene networks in lower airway epithelial cells revealed by cdna microarrays. J Virol 2001, 75(19):9044-9058.
    • (2001) J Virol , vol.75 , Issue.19 , pp. 9044-9058
    • Zhang, Y.1    Luxon, B.A.2    Casola, A.3    Garofalo, R.P.4    Jamaluddin, M.5    Brasier, A.R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.