메뉴 건너뛰기




Volumn 50, Issue 2, 2010, Pages 127-132

Quantitative prediction of MHC-II binding affinity using particle swarm optimization

Author keywords

MHC II quantitative prediction; Particle swarm optimization; Position specific scoring matrix; T cell immunity

Indexed keywords

AREA UNDER ROCS; BINDING AFFINITIES; BINDING PEPTIDE; CORRELATION COEFFICIENT; DIRECT PREDICTION; IMMUNE MECHANISM; IMMUNE RESPONSE; MAJOR HISTOCOMPATIBILITY COMPLEX CLASS; MHC-II BINDING AFFINITY; OPTIMAL POSITION; OPTIMIZATION PROBLEMS; PARTICLE SWARM; PARTICLE SWARM OPTIMIZATION ALGORITHM; PEPTIDE BINDING; PEPTIDE LENGTH; POSITION SPECIFIC SCORING MATRIX; PREDICTION MODEL; QUANTITATIVE METHOD; QUANTITATIVE PREDICTION; R VALUE; SEARCH STRATEGIES; T-CELL EPITOPES; T-CELL IMMUNITY;

EID: 77957170615     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2010.05.003     Document Type: Article
Times cited : (15)

References (33)
  • 1
    • 0142174642 scopus 로고    scopus 로고
    • Prediction of MHC class I binding peptides using SVMHC
    • Donnes P., Elofsson A. Prediction of MHC class I binding peptides using SVMHC. BMC Bioinformatics 2002, 3:25.
    • (2002) BMC Bioinformatics , vol.3 , pp. 25
    • Donnes, P.1    Elofsson, A.2
  • 2
    • 0031825709 scopus 로고    scopus 로고
    • Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
    • Brusic V., Rudy G., Honeyman G., Hammer J., Harrison L. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 1998, 14(2):121-130.
    • (1998) Bioinformatics , vol.14 , Issue.2 , pp. 121-130
    • Brusic, V.1    Rudy, G.2    Honeyman, G.3    Hammer, J.4    Harrison, L.5
  • 3
    • 2442499729 scopus 로고    scopus 로고
    • Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
    • Nielsen M., Lundegaard C., Worning P., Hvid C.S., Lamberth K., Buus S., et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 2004, 20(9):1388-1397.
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1388-1397
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Hvid, C.S.4    Lamberth, K.5    Buus, S.6
  • 4
    • 24144463821 scopus 로고    scopus 로고
    • Prediction of MHC class II binders using the ant colony search strategy
    • Karpenko O., Shi J., Dai Y. Prediction of MHC class II binders using the ant colony search strategy. Artif Intell Med 2005, 35(1-2):147-156.
    • (2005) Artif Intell Med , vol.35 , Issue.1-2 , pp. 147-156
    • Karpenko, O.1    Shi, J.2    Dai, Y.3
  • 5
    • 33750990098 scopus 로고    scopus 로고
    • Prediction of MHC class II binding peptides based on an iterative learning model
    • Murugan N., Dai Y. Prediction of MHC class II binding peptides based on an iterative learning model. Immunome Res 2005, 1:6.
    • (2005) Immunome Res , vol.1 , pp. 6
    • Murugan, N.1    Dai, Y.2
  • 6
    • 38549105061 scopus 로고    scopus 로고
    • Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
    • Rajapakse M., Schmidt B., Feng L., Brusic V. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 2007, 8:459.
    • (2007) BMC Bioinformatics , vol.8 , pp. 459
    • Rajapakse, M.1    Schmidt, B.2    Feng, L.3    Brusic, V.4
  • 7
    • 0033021020 scopus 로고    scopus 로고
    • Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices
    • Sturniolo T., Bono E., Ding J., Raddrizzani L., Tuereci O., Sahin U., et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 1999, 17(6):533-534.
    • (1999) Nat Biotechnol , vol.17 , Issue.6 , pp. 533-534
    • Sturniolo, T.1    Bono, E.2    Ding, J.3    Raddrizzani, L.4    Tuereci, O.5    Sahin, U.6
  • 8
    • 33748792816 scopus 로고    scopus 로고
    • Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes
    • Cui J., Han L.Y., Lin H.H., Zhang H.L., Tang Z.Q., Zheng C.J., et al. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes. Mol Immunol 2007, 44(5):866-877.
    • (2007) Mol Immunol , vol.44 , Issue.5 , pp. 866-877
    • Cui, J.1    Han, L.Y.2    Lin, H.H.3    Zhang, H.L.4    Tang, Z.Q.5    Zheng, C.J.6
  • 9
    • 33845240573 scopus 로고    scopus 로고
    • Predicting class II MHC-peptide binding: a kernel based approach using similarity scores
    • Salomon J., Flower D.R. Predicting class II MHC-peptide binding: a kernel based approach using similarity scores. BMC Bioinformatics 2006, 7:501.
    • (2006) BMC Bioinformatics , vol.7 , pp. 501
    • Salomon, J.1    Flower, D.R.2
  • 10
    • 0344360732 scopus 로고    scopus 로고
    • Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction
    • Doytchinova I.A., Flower D.R. Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction. Bioinformatics 2003, 19(17):2263-2270.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2263-2270
    • Doytchinova, I.A.1    Flower, D.R.2
  • 12
    • 21344466799 scopus 로고    scopus 로고
    • Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications
    • Bui H.H., Sidney J., Peters B., Sathiamurthy M., Sinichi A., Purton K.A., et al. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 2005, 57(5):304-314.
    • (2005) Immunogenetics , vol.57 , Issue.5 , pp. 304-314
    • Bui, H.H.1    Sidney, J.2    Peters, B.3    Sathiamurthy, M.4    Sinichi, A.5    Purton, K.A.6
  • 13
    • 49949115547 scopus 로고    scopus 로고
    • A Bayesian regression approach to the prediction of MHC-II binding affinity
    • Zhang W., Liu J., Niu Y.Q., Wang L., Hu X. A Bayesian regression approach to the prediction of MHC-II binding affinity. Comput Methods Programs Biomed 2008, 92(1):1-7.
    • (2008) Comput Methods Programs Biomed , vol.92 , Issue.1 , pp. 1-7
    • Zhang, W.1    Liu, J.2    Niu, Y.Q.3    Wang, L.4    Hu, X.5
  • 14
    • 34547778364 scopus 로고    scopus 로고
    • Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
    • Nielsen M., Lundegaard C., Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 2007, 8:238.
    • (2007) BMC Bioinformatics , vol.8 , pp. 238
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3
  • 16
    • 0030802693 scopus 로고    scopus 로고
    • T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage
    • Carson R.T., Vignali K.M., Woodland D.L., Vignali D.A. T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity 1997, 7(3):387-399.
    • (1997) Immunity , vol.7 , Issue.3 , pp. 387-399
    • Carson, R.T.1    Vignali, K.M.2    Woodland, D.L.3    Vignali, D.A.4
  • 17
    • 0033812433 scopus 로고    scopus 로고
    • Modulation of TCR recognition of MHC class II/peptide by processed remote N- and carboxy-terminal epitope extensions
    • Bonomi G., Moschella F., Neve Ombra M., Del Pozzo G., Granier C., De Berardinis P., et al. Modulation of TCR recognition of MHC class II/peptide by processed remote N- and carboxy-terminal epitope extensions. Hum Immunol 2000, 61(8):753-763.
    • (2000) Hum Immunol , vol.61 , Issue.8 , pp. 753-763
    • Bonomi, G.1    Moschella, F.2    Neve Ombra, M.3    Del Pozzo, G.4    Granier, C.5    De Berardinis, P.6
  • 18
    • 0035338992 scopus 로고    scopus 로고
    • Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions
    • Godkin A.J., Smith K.J., Willis A., Tejada-Simon M.V., Zhang J., Elliott T., et al. Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions. J Immunol 2001, 166(11):6720-6727.
    • (2001) J Immunol , vol.166 , Issue.11 , pp. 6720-6727
    • Godkin, A.J.1    Smith, K.J.2    Willis, A.3    Tejada-Simon, M.V.4    Zhang, J.5    Elliott, T.6
  • 19
    • 0034430526 scopus 로고    scopus 로고
    • A particle swarm optimization for reactive power and voltage control considering voltage security assessment
    • Yoshida H., Kawata K., Fukuyama Y., Takayama S., Nakanishi Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 2000, 15(4):1232-1239.
    • (2000) IEEE Trans Power Syst , vol.15 , Issue.4 , pp. 1232-1239
    • Yoshida, H.1    Kawata, K.2    Fukuyama, Y.3    Takayama, S.4    Nakanishi, Y.5
  • 22
    • 33646733849 scopus 로고    scopus 로고
    • Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training
    • Meissner M., Schmuker M., Schneider G. Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics 2006, 7:125.
    • (2006) BMC Bioinformatics , vol.7 , pp. 125
    • Meissner, M.1    Schmuker, M.2    Schneider, G.3
  • 24
    • 0028068083 scopus 로고
    • Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides
    • Vogt A.B., Kropshofer H., Kalbacher H., Kalbus M., Rammensee H.G., Coligan J.E., et al. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol 1994, 153:1665-1673.
    • (1994) J Immunol , vol.153 , pp. 1665-1673
    • Vogt, A.B.1    Kropshofer, H.2    Kalbacher, H.3    Kalbus, M.4    Rammensee, H.G.5    Coligan, J.E.6
  • 25
    • 33751020273 scopus 로고    scopus 로고
    • Peptide length-based prediction of peptide-MHC class II binding
    • Chang S., Ghosh D., Kirschner D., Linderman J.J. Peptide length-based prediction of peptide-MHC class II binding. Bioinformatics 2006, 22(22):2761-2767.
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2761-2767
    • Chang, S.1    Ghosh, D.2    Kirschner, D.3    Linderman, J.J.4
  • 26
    • 77957142570 scopus 로고    scopus 로고
    • (accessed 1 February)
    • (accessed 1 February 2009). http://www.jenner.ac.uk/AntiJen/.
    • (2009)
  • 27
    • 77957162633 scopus 로고    scopus 로고
    • (accessed 1 February)
    • (accessed 1 February 2009). http://www.immuneepitope.org/.
    • (2009)
  • 28
    • 77957136782 scopus 로고    scopus 로고
    • (accessed 1 February)
    • (accessed 1 February 2009). http://www.jenner.ac.uk/MHCPred.
    • (2009)
  • 29
    • 77957128656 scopus 로고    scopus 로고
    • (accessed 1 February).
    • (accessed 1 February 2009). http://svrmhc.umn.edu/SVRMHC.
    • (2009)
  • 30
    • 77957131259 scopus 로고    scopus 로고
    • (accessed 1 February)
    • (accessed 1 February 2009). http://tools.immuneepitope.org/tools/matrix/iedbinput%3FmatrixClass=II.
    • (2009)
  • 31
    • 77957154422 scopus 로고    scopus 로고
    • (accessed 1 February)
    • (accessed 1 February 2009). http://tools.immuneepitope.org/analyze/html/mhcIIbinding.html.
    • (2009)
  • 32
    • 33746352651 scopus 로고    scopus 로고
    • Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models
    • Liu W., Meng X., Xu Q., Flower D.R., Li T.B. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinformatics 2006, 7:182.
    • (2006) BMC Bioinformatics , vol.7 , pp. 182
    • Liu, W.1    Meng, X.2    Xu, Q.3    Flower, D.R.4    Li, T.B.5
  • 33
    • 33646876222 scopus 로고    scopus 로고
    • Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in class II binding peptides
    • Tong J.C., Zhang G.L., Tan T.W., August J.T., Brusic V., Ranganathan S. Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in class II binding peptides. Bioinformatics 2006, 22(10):1232-1238.
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1232-1238
    • Tong, J.C.1    Zhang, G.L.2    Tan, T.W.3    August, J.T.4    Brusic, V.5    Ranganathan, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.