-
1
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a boundary domain
-
Agrawal, O. P.: Solution for a fractional diffusion-wave equation defined in a boundary domain. Nonlinear Dyn. 29, 145-155 (2002).
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
-
2
-
-
41449095257
-
Numerical solutions for fractional reaction-diffusion equations
-
Baeumer, B., Koávcs, M., Meerschaert, M.: Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55, 2212-2226 (2008).
-
(2008)
Comput. Math. Appl.
, vol.55
, pp. 2212-2226
-
-
Baeumer, B.1
Koávcs, M.2
Meerschaert, M.3
-
3
-
-
40849115179
-
Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation
-
Chen, C.-M., Liu, F., Burrage, K.: Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754-769 (2008).
-
(2008)
Appl. Math. Comput.
, vol.198
, pp. 754-769
-
-
Chen, C.-M.1
Liu, F.2
Burrage, K.3
-
4
-
-
77955704784
-
Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation
-
Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740-1760 (2010).
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1740-1760
-
-
Chen, C.-M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
5
-
-
79551635060
-
Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term
-
Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical simulation for the variable-order Galilei invariant advection diffusion equation with a nonlinear source term. Appl. Math. Comput. 217, 5729-5742 (2011).
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 5729-5742
-
-
Chen, C.-M.1
Liu, F.2
Anh, V.3
Turner, I.4
-
6
-
-
51749116733
-
Finite difference approximations for the fractional Fokker-Planck equation
-
Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256-273 (2009).
-
(2009)
Appl. Math. Model.
, vol.33
, pp. 256-273
-
-
Chen, S.1
Liu, F.2
Zhuang, P.3
Anh, V.4
-
7
-
-
57349120183
-
Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction-subdiffusion systems
-
Chiu, J. W., Chiam, K.-H.: Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction-subdiffusion systems. Phys. Rev. E 78, 056708 (2008).
-
(2008)
Phys. Rev. E
, vol.78
, pp. 56708
-
-
Chiu, J.W.1
Chiam, K.-H.2
-
8
-
-
0346897985
-
Mechanics with variable-order differential operators
-
Coimbra, C. F. M.: Mechanics with variable-order differential operators. Ann. Phys. 12, 692-703 (2003).
-
(2003)
Ann. Phys.
, vol.12
, pp. 692-703
-
-
Coimbra, C.F.M.1
-
9
-
-
67349146657
-
Feller semigroups obtained by variable-order subordination
-
Evans, K. P., Jacob, N.: Feller semigroups obtained by variable-order subordination. Rev. Mat. Complut. 20(2), 293-307 (2007).
-
(2007)
Rev. Mat. Complut.
, vol.20
, Issue.2
, pp. 293-307
-
-
Evans, K.P.1
Jacob, N.2
-
10
-
-
0002847893
-
Fractional calculus: integral and differential equations of fractional order
-
A. Carpinteri and F. Maainardi (Eds.), New York: Springer
-
Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Maainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223-276. Springer, New York (1997).
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 223-276
-
-
Gorenflo, R.1
Mainardi, F.2
-
11
-
-
0013118687
-
Pseudo differential operators with variable order of differentiation generating Feller semigroup
-
Jacob, N., Leopold, H.: Pseudo differential operators with variable order of differentiation generating Feller semigroup. Integr. Equ. Oper. Theory 17, 544-553 (1993).
-
(1993)
Integr. Equ. Oper. Theory
, vol.17
, pp. 544-553
-
-
Jacob, N.1
Leopold, H.2
-
12
-
-
0013161462
-
On Markov processes generated by pseudodifferentail operator of variable order
-
Kikuchi, K., Negoro, A.: On Markov processes generated by pseudodifferentail operator of variable order. Osaka J. Math. 34, 319-335 (1997).
-
(1997)
Osaka J. Math.
, vol.34
, pp. 319-335
-
-
Kikuchi, K.1
Negoro, A.2
-
13
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands, T. A. M., Henry, B. I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comp. Physiol. 205, 719-736 (2005).
-
(2005)
J. Comp. Physiol.
, vol.205
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
14
-
-
0034355283
-
Embedding of function spaces of variable order of differentiation
-
Leopold, H. G.: Embedding of function spaces of variable order of differentiation. Czechoslov. Math. J. 49, 633-644 (1999).
-
(1999)
Czechoslov. Math. J.
, vol.49
, pp. 633-644
-
-
Leopold, H.G.1
-
15
-
-
67349098149
-
Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation
-
Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212, 435-445 (2009).
-
(2009)
Appl. Math. Comput.
, vol.212
, pp. 435-445
-
-
Lin, R.1
Liu, F.2
Anh, V.3
Turner, I.4
-
16
-
-
34547548712
-
Finite difference/spectral approximation for the time-fractional diffusion equation
-
Lin, Y., Xu, C.: Finite difference/spectral approximation for the time-fractional diffusion equation. J. Comp. Physiol. 225, 1533-1552 (2007).
-
(2007)
J. Comp. Physiol.
, vol.225
, pp. 1533-1552
-
-
Lin, Y.1
Xu, C.2
-
17
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time feactional advection-diffusion equation
-
Liu, F., Zhang, P., Anh, V., Burrage, K.: Stability and convergence of the difference methods for the space-time feactional advection-diffusion equation. Appl. Math. Comput. 191, 12-20 (2007).
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhang, P.2
Anh, V.3
Burrage, K.4
-
18
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 231, 160-176 (2009).
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
19
-
-
33846798041
-
Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method
-
Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method. J. Comp. Physiol. 222, 57-70 (2007).
-
(2007)
J. Comp. Physiol.
, vol.222
, pp. 57-70
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
21
-
-
0036650957
-
Variable-order and distributed order fractional operators
-
Lorenzo, C. F., Hartley, T. T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57-98 (2002).
-
(2002)
Nonlinear Dyn.
, vol.29
, pp. 57-98
-
-
Lorenzo, C.F.1
Hartley, T.T.2
-
22
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65-77 (2004).
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.1
Tadjeran, C.2
-
23
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77 (2000).
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
26
-
-
34547624283
-
Variable order constitutive relation for viscoelasticity
-
Ramirez, L. E. S., Coimbra, C. F. M.: Variable order constitutive relation for viscoelasticity. Ann. Phys. 16, 543-552 (2007).
-
(2007)
Ann. Phys.
, vol.16
, pp. 543-552
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
27
-
-
84862843990
-
On the selection and meaning of variable order operators for dynamic modeling
-
Article ID 846107 (2010). doi: 10. 1155/2010/846107
-
Ramirez, L. E. S., Coimbra, C. F. M.: On the selection and meaning of variable order operators for dynamic modeling. Int. J. Differ. Equ. 2010, Article ID 846107 (2010). doi: 10. 1155/2010/846107.
-
(2010)
Int. J. Differ. Equ.
-
-
Ramirez, L.E.S.1
Coimbra, C.F.M.2
-
28
-
-
2442585557
-
Fractional generalized random fields of variable order
-
Ruiz-Medina, M. D., Anh, V. V., Angulo, J. M.: Fractional generalized random fields of variable order. Stoch. Anal. Appl. 22, 775-799 (2004).
-
(2004)
Stoch. Anal. Appl.
, vol.22
, pp. 775-799
-
-
Ruiz-Medina, M.D.1
Anh, V.V.2
Angulo, J.M.3
-
29
-
-
41149113919
-
Reaction-subdiffusion equations for the A⇌B reaction
-
Sagués, F., Shkilev, V. P., Sokolov, I. M.: Reaction-subdiffusion equations for the A⇌B reaction. Phys. Rev. E 77, 032102 (2008).
-
(2008)
Phys. Rev. E
, vol.77
, pp. 32102
-
-
Sagués, F.1
Shkilev, V.P.2
Sokolov, I.M.3
-
30
-
-
84948882036
-
Integration and differentiation to a variable fractional order
-
Samko, S. G., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Transf. Spec. F. 1, 277-300 (1993).
-
(1993)
Integr. Transf. Spec. F.
, vol.1
, pp. 277-300
-
-
Samko, S.G.1
Ross, B.2
-
31
-
-
65849488866
-
Front propagation in a one-dimensional autocatalytic reaction-subdiffusion system
-
Schmidt-Martens, H. H., Froemberg, D., Sokolov, I. M.: Front propagation in a one-dimensional autocatalytic reaction-subdiffusion system. Phys. Rev. E 79, 041135 (2009).
-
(2009)
Phys. Rev. E
, vol.79
, pp. 41135
-
-
Schmidt-Martens, H.H.1
Froemberg, D.2
Sokolov, I.M.3
-
32
-
-
57649137996
-
The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
-
Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 73, 850-872 (2008).
-
(2008)
IMA J. Appl. Math.
, vol.73
, pp. 850-872
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
-
33
-
-
33644697057
-
Reaction-subdiffusion equations
-
Sokolov, I. M., Schmidt, M. G. W., Sagués, F.: Reaction-subdiffusion equations. Phys. Rev. E 73, 031102 (2006).
-
(2006)
Phys. Rev. E
, vol.73
, pp. 31102
-
-
Sokolov, I.M.1
Schmidt, M.G.W.2
Sagués, F.3
-
35
-
-
25444483399
-
Variable viscoelasticity operator
-
Soon, C. M., Coimbra, C. F. M., Kobayashi, M. H.: Variable viscoelasticity operator. Ann. Phys. 14, 378-389 (2005).
-
(2005)
Ann. Phys.
, vol.14
, pp. 378-389
-
-
Soon, C.M.1
Coimbra, C.F.M.2
Kobayashi, M.H.3
-
36
-
-
31744438550
-
A second-order accuate numerical approximation for the fractional diffusion equation
-
Taddjeran, C., Meerschaert, M., Scheffler, H.: A second-order accuate numerical approximation for the fractional diffusion equation. J. Comp. Physiol. 213, 205-213 (2006).
-
(2006)
J. Comp. Physiol.
, vol.213
, pp. 205-213
-
-
Taddjeran, C.1
Meerschaert, M.2
Scheffler, H.3
-
37
-
-
33846399755
-
Kinetic equations for reaction-subdiffusion systems: Derivation and stability analysis
-
Yadav, A., Horsthemke, W.: Kinetic equations for reaction-subdiffusion systems: Derivation and stability analysis. Phys. Rev. E 74, 066118 (2006).
-
(2006)
Phys. Rev. E
, vol.74
, pp. 66118
-
-
Yadav, A.1
Horsthemke, W.2
-
38
-
-
50249158543
-
Turing instability in reaction-subdiffusion systems
-
Yadav, A., Milu, S. M., Horsthemke, W.: Turing instability in reaction-subdiffusion systems. Phys. Rev. E 78, 026116 (2008).
-
(2008)
Phys. Rev. E
, vol.78
, pp. 26116
-
-
Yadav, A.1
Milu, S.M.2
Horsthemke, W.3
-
39
-
-
41449094744
-
Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposition method
-
Yu, Q., Liu, F., Anh, V., Turner, I.: Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian decomposition method. Int. J. Numer. Methods Eng. 74, 138-158 (2008).
-
(2008)
Int. J. Numer. Methods Eng.
, vol.74
, pp. 138-158
-
-
Yu, Q.1
Liu, F.2
Anh, V.3
Turner, I.4
-
40
-
-
42749099017
-
Reaction front in an A+B →C reaction-subdiffusion process
-
Yuste, S. B., Acedo, L., Lindenberg, K.: Reaction front in an A+B →C reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004).
-
(2004)
Phys. Rev. E
, vol.69
, pp. 36126
-
-
Yuste, S.B.1
Acedo, L.2
Lindenberg, K.3
-
41
-
-
25444472344
-
An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations
-
Yuste, S. B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862-1874 (2005).
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
42
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste, S. B.: Weighted average finite difference methods for fractional diffusion equations. J. Comp. Physiol. 216, 264-274 (2006).
-
(2006)
J. Comp. Physiol.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
43
-
-
34249805393
-
Numerical approximation of Lévy-Feller diffusion equation and its probability interpretation
-
Zhang, H., Liu, F., Anh, V.: Numerical approximation of Lévy-Feller diffusion equation and its probability interpretation. J. Comput. Appl. Math. 206, 1098-1115 (2007).
-
(2007)
J. Comput. Appl. Math.
, vol.206
, pp. 1098-1115
-
-
Zhang, H.1
Liu, F.2
Anh, V.3
-
44
-
-
84907893973
-
Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term
-
Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760-1781 (2009).
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
|