-
1
-
-
34249829934
-
-
W. Feller, On a generalization of Marcel Riesz' potentials and the semi-groups generated by them, Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié a M. Riesz, Lund (1952) 73-81.
-
-
-
-
2
-
-
34249817348
-
-
W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, second ed., Wiley, New York, 1971.
-
-
-
-
3
-
-
44049116564
-
Fractional diffusion equation for transport phenomena in random media
-
Giona M., and Roman H.E. Fractional diffusion equation for transport phenomena in random media. Physica A 185 (1992) 87-97
-
(1992)
Physica A
, vol.185
, pp. 87-97
-
-
Giona, M.1
Roman, H.E.2
-
4
-
-
0032647143
-
Discrete random walk models for symmetric Lévy-Feller diffusion process
-
Gorenflo R., De Fabritiis G., and Mainardi F. Discrete random walk models for symmetric Lévy-Feller diffusion process. Physica A 269 (1999) 79-89
-
(1999)
Physica A
, vol.269
, pp. 79-89
-
-
Gorenflo, R.1
De Fabritiis, G.2
Mainardi, F.3
-
5
-
-
0000361678
-
Random walk models for space-fractional diffusion processes
-
Gorenflo R., and Mainardi F. Random walk models for space-fractional diffusion processes. Fract. Cal. Appl. Anal. 1 (1998) 167-191
-
(1998)
Fract. Cal. Appl. Anal.
, vol.1
, pp. 167-191
-
-
Gorenflo, R.1
Mainardi, F.2
-
6
-
-
34249809186
-
-
R. Gorenflo, F. Mainardi, Feller fractional diffusion and Lévy stable motions, Conference on Levy Processes: Theory and Applications, January 1999, pp. 18-22.
-
-
-
-
7
-
-
0345725412
-
Approximation of Lévy-Feller diffusion by random walk
-
Gorenflo R., and Mainardi F. Approximation of Lévy-Feller diffusion by random walk. J. Anal. Appl. 18 (1999) 231-246
-
(1999)
J. Anal. Appl.
, vol.18
, pp. 231-246
-
-
Gorenflo, R.1
Mainardi, F.2
-
8
-
-
0036828301
-
Discrete random walk models for space-time fractional diffusion
-
Gorenflo R., Mainardi F., Moretti D., Pagnini G., and Paradisi P. Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284 (2002) 521-541
-
(2002)
Chem. Phys.
, vol.284
, pp. 521-541
-
-
Gorenflo, R.1
Mainardi, F.2
Moretti, D.3
Pagnini, G.4
Paradisi, P.5
-
9
-
-
0141996364
-
Fully discrete random walks for space-time fractional diffusion equations
-
Gorenflo R., and Vivoli A. Fully discrete random walks for space-time fractional diffusion equations. Signal Process. 83 (2003) 2411-2420
-
(2003)
Signal Process.
, vol.83
, pp. 2411-2420
-
-
Gorenflo, R.1
Vivoli, A.2
-
10
-
-
0003498504
-
-
Academic Press, San Diego
-
Gradshteyn I.S., and Ryzhik I.M. Tables of Integrals, Series, and Products. sixth ed. (2000), Academic Press, San Diego
-
(2000)
Tables of Integrals, Series, and Products. sixth ed.
-
-
Gradshteyn, I.S.1
Ryzhik, I.M.2
-
15
-
-
33744918752
-
Fractional diffusion and reflective boundary condition
-
Krepysheva N., Pietro L.Di., and Néel M.C. Fractional diffusion and reflective boundary condition. Physica A 368 (2006) 355-361
-
(2006)
Physica A
, vol.368
, pp. 355-361
-
-
Krepysheva, N.1
Pietro, L.Di.2
Néel, M.C.3
-
16
-
-
33344471905
-
-
N. Krepysheva, L.Di. Pietro, M.C. Néel, Space fractional advection-diffusion and reflective boundary conditions, Phys. Rev. E 73 (2006) 021104//1-9.
-
-
-
-
18
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu F., Anh V., and Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166 (2004) 209-219
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
19
-
-
33751548431
-
Numerical simulation for solute transport in fractal porous media
-
Liu F., Anh V., Turner I., and Zhuang P. Numerical simulation for solute transport in fractal porous media. ANZIAM J. 45 E (2004) 461-473
-
(2004)
ANZIAM J.
, vol.45
, Issue.E
, pp. 461-473
-
-
Liu, F.1
Anh, V.2
Turner, I.3
Zhuang, P.4
-
20
-
-
33751533397
-
Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation
-
Liu F., Shen S., Anh V., and Turner I. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. 46 E (2005) 488-504
-
(2005)
ANZIAM J.
, vol.46
, Issue.E
, pp. 488-504
-
-
Liu, F.1
Shen, S.2
Anh, V.3
Turner, I.4
-
21
-
-
34249783708
-
-
F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 2006, in press.
-
-
-
-
22
-
-
34249812451
-
-
Q. Liu, F. Liu, I. Turner and V. Anh, Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method, J. Phys. Comput., 2006, in press.
-
-
-
-
23
-
-
0001407424
-
The fundamental solution of the space-time fractional diffusion equation
-
Mainardi F., Luchko an Y., and Pagnini G. The fundamental solution of the space-time fractional diffusion equation. Frac. Cal. Appl. Anal. 4 2 (2001) 153-192
-
(2001)
Frac. Cal. Appl. Anal.
, vol.4
, Issue.2
, pp. 153-192
-
-
Mainardi, F.1
Luchko an, Y.2
Pagnini, G.3
-
24
-
-
25444463578
-
Finite difference methods for two-dimensional fractional dispersion equation
-
Meerschaert M.M., Scheffler H., and Tadjeran C. Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211 (2006) 249-261
-
(2006)
J. Comput. Phys.
, vol.211
, pp. 249-261
-
-
Meerschaert, M.M.1
Scheffler, H.2
Tadjeran, C.3
-
25
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
Meerschaert M.M., and Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172 (2004) 65-77
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
26
-
-
0033884660
-
Boundary value problems for fractional diffusion equations
-
Metzler R., and Klafter J. Boundary value problems for fractional diffusion equations. Physica A 278 (2000) 107-125
-
(2000)
Physica A
, vol.278
, pp. 107-125
-
-
Metzler, R.1
Klafter, J.2
-
27
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., and Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Report 339 (2000) 1-77
-
(2000)
Phys. Report
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
28
-
-
4043151477
-
The restaurant at the end of the random walk recent developments in the description of anomalous transport by fractional dynamics
-
Metzler R., and Klafter J. The restaurant at the end of the random walk recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37 (2004) R161-R208
-
(2004)
J. Phys. A
, vol.37
-
-
Metzler, R.1
Klafter, J.2
-
29
-
-
31244438428
-
A physical interpretation for the fractional derivative in the Lévy diffusion
-
Molz III F.J., Fjx III G.J., and Lu S. A physical interpretation for the fractional derivative in the Lévy diffusion. Appl. Math. Lett. 15 (2002) 907-911
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 907-911
-
-
Molz III, F.J.1
Fjx III, G.J.2
Lu, S.3
-
33
-
-
70549107817
-
Error analysis of an explicit finite difference approximation for the space fractional diffusion with insulated ends
-
Shen S., and Liu F. Error analysis of an explicit finite difference approximation for the space fractional diffusion with insulated ends. ANZIAM J. 46 E (2005) 871-887
-
(2005)
ANZIAM J.
, vol.46
, Issue.E
, pp. 871-887
-
-
Shen, S.1
Liu, F.2
-
35
-
-
14844296496
-
A probabilistic interpretation of the fractional order differentiation
-
Teneiro Machado J.A. A probabilistic interpretation of the fractional order differentiation. Frac. Cal. Appl. Anal. 6 1 (2003) 73-80
-
(2003)
Frac. Cal. Appl. Anal.
, vol.6
, Issue.1
, pp. 73-80
-
-
Teneiro Machado, J.A.1
-
37
-
-
84867978055
-
Implicit difference approximation for the time fractional diffusion equation
-
Zhuang P., and Liu F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 3 (2006) 87-99
-
(2006)
J. Appl. Math. Comput.
, vol.22
, Issue.3
, pp. 87-99
-
-
Zhuang, P.1
Liu, F.2
|