메뉴 건너뛰기




Volumn 25, Issue 7, 2013, Pages 1670-1685

Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference

Author keywords

Bayesian estimation; feature selection; generalized Dirichlet; human action videos; Mixture models; model selection; unsupervised learning; variational inference

Indexed keywords

BAYESIAN ESTIMATIONS; GENERALIZED DIRICHLET; HUMAN ACTIONS; MIXTURE MODEL; MODEL SELECTION; VARIATIONAL INFERENCE;

EID: 84878296503     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2012.101     Document Type: Article
Times cited : (48)

References (71)
  • 1
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Sept.
    • J.H. Friedman and J.W. Tukey, "A Projection Pursuit Algorithm for Exploratory Data Analysis," IEEE Trans. Computers, vol. 23, no. 9, pp. 881-890, Sept. 1974.
    • (1974) IEEE Trans. Computers , vol.23 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 2
    • 0000710590 scopus 로고
    • A preliminary study of optimal variable weighting in k-means clustering
    • P.E. Green, F.J. Carmone, and J. Kim, "A Preliminary Study of Optimal Variable Weighting in K-Means Clustering," J. Classification, vol. 7, no. 2, pp. 271-285, 1990.
    • (1990) J. Classification , vol.7 , Issue.2 , pp. 271-285
    • Green, P.E.1    Carmone, F.J.2    Kim, J.3
  • 3
    • 0026839971 scopus 로고
    • Fast genetic selection of features for neural network classifiers
    • Mar.
    • F.Z. Brill, D.E. Brown, and W.N. Martin, "Fast Genetic Selection of Features for Neural Network Classifiers," IEEE Trans. Neural Networks, vol. 3, no. 2, pp. 324-328, Mar. 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.2 , pp. 324-328
    • Brill, F.Z.1    Brown, D.E.2    Martin, W.N.3
  • 6
    • 0001858087 scopus 로고
    • Multivariate decision trees
    • C.E. Brodley and P.E. Utgoff, "Multivariate Decision Trees," Machine Learning, vol. 19, no. 1, pp. 45-77, 1995.
    • (1995) Machine Learning , vol.19 , Issue.1 , pp. 45-77
    • Brodley, C.E.1    Utgoff, P.E.2
  • 10
    • 67650370037 scopus 로고    scopus 로고
    • A hybrid feature extraction selection approach for high-dimensional non-gaussian data clustering
    • Aug.
    • S. Boutemedjet, N. Bouguila, and D. Ziou, "A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Clustering," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 8, pp. 1429-1443, Aug. 2009.
    • (2009) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.31 , Issue.8 , pp. 1429-1443
    • Boutemedjet, S.1    Bouguila, N.2    Ziou, D.3
  • 11
    • 33645283097 scopus 로고    scopus 로고
    • Unsupervised learning of parsimonious mixtures on large spaces with integrated feature and component selection
    • Apr.
    • M.W. Graham and D.J. Miller, "Unsupervised Learning of Parsimonious Mixtures on Large Spaces with Integrated Feature and Component Selection," IEEE Trans. Signal Processing, vol. 54, no. 4, pp. 1289-1303, Apr. 2006.
    • (2006) IEEE Trans. Signal Processing , vol.54 , Issue.4 , pp. 1289-1303
    • Graham, M.W.1    Miller, D.J.2
  • 12
    • 33645505223 scopus 로고    scopus 로고
    • Variable selection for model-based clustering
    • DOI 10.1198/016214506000000113
    • A.E. Raftery and N. Dean, "Variable Selection for Model-Based Clustering," J. Am. Statistical Assoc., vol. 101, no. 473, pp. 168-178, 2006. (Pubitemid 43500033)
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.473 , pp. 168-178
    • Raftery, A.E.1    Dean, N.2
  • 14
    • 70350680424 scopus 로고    scopus 로고
    • A model-based approach for discrete data clustering and feature weighting using map and stochastic complexity
    • Dec.
    • N. Bouguila, "A Model-Based Approach for Discrete Data Clustering and Feature Weighting Using MAP and Stochastic Complexity," IEEE Transactions Knowledge and Data Eng., vol. 21, no. 12, pp. 1649-1664, Dec. 2009.
    • (2009) IEEE Transactions Knowledge and Data Eng. , vol.21 , Issue.12 , pp. 1649-1664
    • Bouguila, N.1
  • 15
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for clustering with gaussian mixture models
    • C. Maugis, G. Celeux, and M-L. Martin-Magniette, "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, vol. 65, no. 3, pp. 701-709, 2009.
    • (2009) Biometrics , vol.65 , Issue.3 , pp. 701-709
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.-L.3
  • 16
    • 77952009834 scopus 로고    scopus 로고
    • Sparse bayesian hierarchical modeling of high-dimensional clustering problems
    • H. Lian, "Sparse Bayesian Hierarchical Modeling of High-Dimensional Clustering Problems," J. Multivariate Analysis, vol. 101, no. 7, pp. 1728-1737, 2010.
    • (2010) J. Multivariate Analysis , vol.101 , Issue.7 , pp. 1728-1737
    • Lian, H.1
  • 17
    • 64849084369 scopus 로고    scopus 로고
    • Simultaneous localized feature selection and model detection for gaussian mixtures
    • May
    • Y. Li, M. Dong, and J. Hua, "Simultaneous Localized Feature Selection and Model Detection for Gaussian Mixtures," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 953-960, May 2009.
    • (2009) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.31 , Issue.5 , pp. 953-960
    • Li, Y.1    Dong, M.2    Hua, J.3
  • 18
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley and A.E. Raftery, "Model-Based Clustering, Discriminant Analysis, and Density Estimation," J. Am. Statistical Assoc., vol. 97, no. 458, pp. 611-631, 2002.
    • (2002) J. Am. Statistical Assoc. , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 19
    • 33747684076 scopus 로고    scopus 로고
    • A hybrid SEM algorithm for high-dimensional unsupervised learning using a finite generalized Dirichlet mixture
    • DOI 10.1109/TIP.2006.877379
    • N. Bouguila and D. Ziou, "A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture," IEEE Trans. Image Processing, vol. 15, no. 9, pp. 2657-2668, Sept. 2006. (Pubitemid 44270206)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.9 , pp. 2657-2668
    • Bouguila, N.1    Ziou, D.2
  • 20
    • 36048970168 scopus 로고    scopus 로고
    • High-dimensional unsupervised selection and estimation of a finite generalized dirichlet mixture model based on minimum message length
    • Oct.
    • N. Bouguila and D. Ziou, "High-Dimensional Unsupervised Selection and Estimation of a Finite Generalized Dirichlet Mixture Model Based on Minimum Message Length," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1716-1731, Oct. 2007.
    • (2007) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.29 , Issue.10 , pp. 1716-1731
    • Bouguila, N.1    Ziou, D.2
  • 23
    • 0001375902 scopus 로고
    • Statistical physics, mixtures of distributions, and the em algorithm
    • A.L. Yuille, P. Stolorz, and J. Utans, "Statistical Physics, Mixtures of Distributions, and the EM Algorithm," Neural Computation, vol. 6, no. 2, pp. 334-340, 1994.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 334-340
    • Yuille, A.L.1    Stolorz, P.2    Utans, J.3
  • 26
    • 0442325012 scopus 로고    scopus 로고
    • Markov chain monte carlo: 10 years and still running!
    • O. Cappé and C.P. Robert, "Markov Chain Monte Carlo: 10 Years and Still Running!," J. Am. Statistical Assoc., vol. 95, no. 452, pp. 1282-1286, 2000.
    • (2000) J. Am. Statistical Assoc. , vol.95 , Issue.452 , pp. 1282-1286
    • Cappé, O.1    Robert, C.P.2
  • 27
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T.S. Jaakkola and M.I. Jordan, "Bayesian Parameter Estimation via Variational Methods," Statistics and Computing, vol. 10, no. 1, pp. 25-37, 2000.
    • (2000) Statistics and Computing , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 28
    • 0036020938 scopus 로고    scopus 로고
    • On the adequacy of variational lower bound functions for likelihood-based inference in markovian models with missing values
    • P. Hall, K. Humphreys, and D.M. Titterington, "On the Adequacy of Variational Lower Bound Functions for Likelihood-Based Inference in Markovian Models with Missing Values," J. Royal Statistical Soc. Series B (Statistical Methodology), vol. 64, no. 3, pp. 549-564, 2002.
    • (2002) J. Royal Statistical Soc. Series B (Statistical Methodology) , vol.64 , Issue.3 , pp. 549-564
    • Hall, P.1    Humphreys, K.2    Titterington, D.M.3
  • 31
    • 0033330288 scopus 로고    scopus 로고
    • Variational probabilistic inference and the QMR-DT network
    • T.S. Jaakkola and M.I. Jordan, "Variational Probabilistic Inference and the QMR-DT Network," J. Artificial Intelligence Research, vol. 10, pp. 291-322, 1999. (Pubitemid 30573907)
    • (1999) Journal of Artificial Intelligence Research , vol.10 , pp. 291-322
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 32
    • 0036729732 scopus 로고    scopus 로고
    • Variational bayes for generalized autoregressive models
    • DOI 10.1109/TSP.2002.801921, PII 1011092002801921
    • S.J. Roberts and W.D. Penny, "Variational Bayes for Generalized Autoregressive Models," IEEE Trans. Signal Processing, vol. 50, no. 9, pp. 2245-2257, Sept. 2002. (Pubitemid 34974216)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.9 , pp. 2245-2257
    • Roberts, S.J.1    Penny, W.D.2
  • 34
    • 33746783604 scopus 로고    scopus 로고
    • Variational segmentation of color images
    • DOI 10.1109/ICIP.2005.1530130, 1530130, IEEE International Conference on Image Processing 2005, ICIP 2005
    • N. Nasios and A.G. Bors, "Variational Segmentation of Color Images," Proc. IEEE Int'l Conf. Image Processing (ICIP), pp. 614-617, 2005. (Pubitemid 44539014)
    • (2005) Proceedings - International Conference on Image Processing, ICIP , vol.2 , pp. 614-617
    • Nasios, N.1    Bors, A.G.2
  • 36
    • 0002048998 scopus 로고
    • A validation study of a variable weighting algorithm for cluster analysis
    • G.W. Milligan, "A Validation Study of a Variable Weighting Algorithm for Cluster Analysis," J. Classification, vol. 6, no. 1, pp. 53-71, 1989.
    • (1989) J. Classification , vol.6 , Issue.1 , pp. 53-71
    • Milligan, G.W.1
  • 37
    • 0035534927 scopus 로고    scopus 로고
    • A variable-selection heuristic for k-means clustering
    • M.J. Brusco and J.D. Cradit, "A Variable-Selection Heuristic for K-Means Clustering," Psychometrika, vol. 66, no. 2, pp. 249-270, 2001.
    • (2001) Psychometrika , vol.66 , Issue.2 , pp. 249-270
    • Brusco, M.J.1    Cradit, J.D.2
  • 40
    • 0002414638 scopus 로고
    • Synthesized clustering: A method for amalgamating alternative clustering based with differential weighting of variables
    • W.S. DeSarbo, J.D. Carroll, L.A. Clark, and P.E. Green, "Synthesized Clustering: A Method for Amalgamating Alternative Clustering Based with Differential Weighting of Variables," Psychometrika, vol. 49, no. 1, pp. 57-78, 1984.
    • (1984) Psychometrika , vol.49 , Issue.1 , pp. 57-78
    • Desarbo, W.S.1    Carroll, J.D.2    Clark, L.A.3    Green, P.E.4
  • 41
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • D.A. Bell and H. Wang, "A Formalism for Relevance and Its Application in Feature Subset Selection," Machine Learning, vol. 41, no. 2, pp. 175-195, 2000.
    • (2000) Machine Learning , vol.41 , Issue.2 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 42
    • 33646682404 scopus 로고    scopus 로고
    • Practical Bayesian estimation of a finite beta mixture through gibbs sampling and its applications
    • DOI 10.1007/s11222-006-8451-7
    • N. Bouguila, D. Ziou, and E. Monga, "Practical Bayesian Estimation of a Finite Beta Mixture through Gibbs Sampling and its Applications," Statistics and Computing, vol. 16, no. 2, pp. 215-225, 2006. (Pubitemid 43742298)
    • (2006) Statistics and Computing , vol.16 , Issue.2 , pp. 215-225
    • Bouguila, N.1    Ziou, D.2    Monga, E.3
  • 43
    • 0030784543 scopus 로고    scopus 로고
    • Learning and updating of uncertainty in dirichlet models
    • E. Castillo, A.S. Hadi, C. Solares, "Learning and Updating of Uncertainty in Dirichlet Models," Machine Learning, vol. 26, no. 1, pp. 43-63, 1997. (Pubitemid 127722999)
    • (1997) Machine Learning , vol.26 , Issue.1 , pp. 43-63
    • Castillo, E.1    Hadi, A.S.2    Solares, C.3
  • 44
    • 60949093876 scopus 로고    scopus 로고
    • On bayesian analysis of a finite generalized dirichlet mixture via a metropolis-within-gibbs sampling
    • N. Bouguila, D. Ziou, and R.I. Hammoud, "On Bayesian Analysis of a Finite Generalized Dirichlet Mixture via a Metropolis-within-Gibbs Sampling," Pattern Analysis and Applications, vol. 12, no. 2, pp. 151-166, 2009.
    • (2009) Pattern Analysis and Applications , vol.12 , Issue.2 , pp. 151-166
    • Bouguila, N.1    Ziou, D.2    Hammoud, R.I.3
  • 45
    • 80053127168 scopus 로고    scopus 로고
    • Bayesian estimation of beta mixture models with variational inference
    • Nov.
    • Z. Ma and A. Leijon, "Bayesian Estimation of Beta Mixture Models with Variational Inference," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2160-2173, Nov. 2011.
    • (2011) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.33 , Issue.11 , pp. 2160-2173
    • Ma, Z.1    Leijon, A.2
  • 51
    • 33746365837 scopus 로고    scopus 로고
    • Unsupervised selection of a finite dirichlet mixture model: An MML-based approach
    • DOI 10.1109/TKDE.2006.133, 1644725
    • N. Bouguila and D. Ziou, "Unsupervised Selection of a Finite Dirichlet Mixture Model: An MML-Based Approach," IEEE Trans. Knowledge and Data Eng., vol. 18, no. 8, pp. 993-1009, Aug. 2006. (Pubitemid 44109531)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.8 , pp. 993-1009
    • Bouguila, N.1    Ziou, D.2
  • 52
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes (with discussions)
    • J.H. Friedman and J.J. Meulman, "Clustering Objects on Subsets of Attributes (with Discussions)," J. Royal Statistical Soc., Series B, vol. 66, no. 4, pp. 815-849, 2004.
    • (2004) J. Royal Statistical Soc., Series B , vol.66 , Issue.4 , pp. 815-849
    • Friedman, J.H.1    Meulman, J.J.2
  • 59
    • 33745943239 scopus 로고    scopus 로고
    • Efficient visual event detection using volumetric features
    • DOI 10.1109/ICCV.2005.85, 1541253, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
    • Y. Ke, R. Sukthankar, and M. Hebert, "Efficient Visual Event Detection Using Volumetric Features," Proc. IEEE Int'l Conf. Computer Vision (ICCV), pp. 166-173, 2005. (Pubitemid 44054955)
    • (2005) Proceedings of the IEEE International Conference on Computer Vision , vol.I , pp. 166-173
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 65
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • DOI 10.1007/s11263-005-1838-7
    • I. Laptev, "On Space-Time Interest Points," Int'l J. Computer Vision, vol. 64, no. 2/3, pp. 107-123, 2005. (Pubitemid 41314645)
    • (2005) International Journal of Computer Vision , vol.64 , Issue.2-3 , pp. 107-123
    • Laptev, I.1
  • 69
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic Latent Semantic Analysis
    • DOI 10.1023/A:1007617005950
    • T. Hofmann, "Unsupervised Learning by Probabilistic Latent Semantic Analysis," Machine Learning, vol. 42, no. 1/2, pp. 177-196, 2001. (Pubitemid 32872403)
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 71
    • 73949130630 scopus 로고    scopus 로고
    • A dirichlet process mixture of generalized dirichlet distributions for proportional data modeling
    • Jan.
    • N. Bouguila and D. Ziou, "A Dirichlet Process Mixture of Generalized Dirichlet Distributions For Proportional Data Modeling," IEEE Trans. Neural Networks, vol. 21, no. 1, pp. 107-122, Jan. 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.1 , pp. 107-122
    • Bouguila, N.1    Ziou, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.