-
1
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
2
-
-
0027453616
-
Model-based Gaussian and non-Gaussian clustering
-
Banfield J.D., Raftery A.E. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49(3):803-821.
-
(1993)
Biometrics
, vol.49
, Issue.3
, pp. 803-821
-
-
Banfield, J.D.1
Raftery, A.E.2
-
3
-
-
0035998835
-
Model-based clustering, discriminant analysis, and density estimation
-
Fraley C., Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 2002, 97(458):611-631.
-
(2002)
Journal of the American Statistical Association
, vol.97
, Issue.458
, pp. 611-631
-
-
Fraley, C.1
Raftery, A.E.2
-
4
-
-
0037339264
-
Clustering of time-course gene expression data using a mixed-effects model with B-splines
-
Luan Y., Li H. Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 2003, 19:474-482.
-
(2003)
Bioinformatics
, vol.19
, pp. 474-482
-
-
Luan, Y.1
Li, H.2
-
5
-
-
34249029861
-
Penalized model-based clustering with application to variable selection
-
Pan W., Shen X. Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research 2007, 8:1145-1164.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1145-1164
-
-
Pan, W.1
Shen, X.2
-
6
-
-
49549108208
-
Penalized clustering of large scale functional data with multiple covariates
-
Ma P., Zhong W. Penalized clustering of large scale functional data with multiple covariates. Journal of the American Statistical Association 2008, 103(482):625-636.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.482
, pp. 625-636
-
-
Ma, P.1
Zhong, W.2
-
9
-
-
0031526204
-
Approaches for Bayesian variable selection
-
George E.I., McCulloch R.E. Approaches for Bayesian variable selection. Statistica Sinica 1997, 7(2):339-373.
-
(1997)
Statistica Sinica
, vol.7
, Issue.2
, pp. 339-373
-
-
George, E.I.1
McCulloch, R.E.2
-
11
-
-
15044339834
-
Bayesian clustering with variable and transformation selection
-
Liu J., Zhang J., Palumbo M., Lawrence C. Bayesian clustering with variable and transformation selection. Bayesian Statistics 2003, 7:249-275.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 249-275
-
-
Liu, J.1
Zhang, J.2
Palumbo, M.3
Lawrence, C.4
-
13
-
-
33845734547
-
Variable selection in clustering via Dirichlet process mixture models
-
Kim S., Tadesse M.G., Vannucci M. Variable selection in clustering via Dirichlet process mixture models. Biometrika 2006, 93(4):877-893.
-
(2006)
Biometrika
, vol.93
, Issue.4
, pp. 877-893
-
-
Kim, S.1
Tadesse, M.G.2
Vannucci, M.3
-
14
-
-
33645992615
-
Model-based subspace clustering
-
Hoff P. Model-based subspace clustering. Bayesian Analysis 2006, 1:321-344.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 321-344
-
-
Hoff, P.1
-
15
-
-
49549125943
-
Sparse statistical modelling in gene expression genomics
-
Cambridge University Press
-
Lucas J., Carvalho C., Wang Q., Bild A., Nevins J.R., West M. Sparse statistical modelling in gene expression genomics. Bayesian Inference for Gene Expression and Proteomics 2006, 155-176. Cambridge University Press.
-
(2006)
Bayesian Inference for Gene Expression and Proteomics
, pp. 155-176
-
-
Lucas, J.1
Carvalho, C.2
Wang, Q.3
Bild, A.4
Nevins, J.R.5
West, M.6
-
17
-
-
62549125109
-
High-dimensional sparse factor modeling: applications in gene expression genomics
-
Carvalho C., Chang J., Lucas J., Nevins J., Wang Q., West M. High-dimensional sparse factor modeling: applications in gene expression genomics. Journal of the American Statistical Association 2008, 103(484):1438-1456.
-
(2008)
Journal of the American Statistical Association
, vol.103
, Issue.484
, pp. 1438-1456
-
-
Carvalho, C.1
Chang, J.2
Lucas, J.3
Nevins, J.4
Wang, Q.5
West, M.6
-
18
-
-
0000708831
-
Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
-
Antoniak C.E. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 1974, 2(6):1152-1174.
-
(1974)
The Annals of Statistics
, vol.2
, Issue.6
, pp. 1152-1174
-
-
Antoniak, C.E.1
-
20
-
-
77952010557
-
-
BART: Bayesian additive regression trees. Annals of Applied Statistics, (in press).
-
H.A. Chipman, E.I. George, R.E. McCulloch, BART: Bayesian additive regression trees. Annals of Applied Statistics, 2010 (in press).
-
(2010)
-
-
Chipman, H.A.1
George, E.I.2
McCulloch, R.E.3
-
22
-
-
40249119787
-
Predictive performance of Dirichlet process shrinkage methods in linear regression
-
Nott D.J. Predictive performance of Dirichlet process shrinkage methods in linear regression. Computational Statistics & Data Analysis 2008, 52(7):3658-3669.
-
(2008)
Computational Statistics & Data Analysis
, vol.52
, Issue.7
, pp. 3658-3669
-
-
Nott, D.J.1
-
23
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S., Fridlyand J., Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 2002, 97(457):77-87.
-
(2002)
Journal of the American Statistical Association
, vol.97
, Issue.457
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
24
-
-
0034911875
-
An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
-
Thomas J.G., Olson J.M., Tapscott S.J., Zhao L.P. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research 2001, 11(7):1227-1236.
-
(2001)
Genome Research
, vol.11
, Issue.7
, pp. 1227-1236
-
-
Thomas, J.G.1
Olson, J.M.2
Tapscott, S.J.3
Zhao, L.P.4
-
25
-
-
77952012379
-
-
MCLUST version 3 for R: normal mixture modeling and model-based clustering. Technical Report no. 504, Department of Statistics, University of Washington.
-
C. Fraley, A.E. Raftery, MCLUST version 3 for R: normal mixture modeling and model-based clustering. Technical Report no. 504, Department of Statistics, University of Washington (2006).
-
(2006)
-
-
Fraley, C.1
Raftery, A.E.2
-
26
-
-
33745156863
-
Some theory for Fisher's linear discriminant function, naive Bayes', and some alternatives when there are many more variables than observations
-
Bickel P.J., Levina E. Some theory for Fisher's linear discriminant function, naive Bayes', and some alternatives when there are many more variables than observations. Bernoulli 2004, 10(6):989-1010.
-
(2004)
Bernoulli
, vol.10
, Issue.6
, pp. 989-1010
-
-
Bickel, P.J.1
Levina, E.2
-
27
-
-
2342533421
-
Class prediction by nearest shrunken centroids, with applications to DNA microarrays
-
Tibshirani R., Hastie T., Narasimhan B., Chu G. Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statistical Science 2003, 18(1):104-117.
-
(2003)
Statistical Science
, vol.18
, Issue.1
, pp. 104-117
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
28
-
-
77950032550
-
Markov chain sampling methods for Dirichlet process mixture
-
Neal R.M. Markov chain sampling methods for Dirichlet process mixture. Journal of Computational and Graphical Statistics 2000, 9(2):249-265.
-
(2000)
Journal of Computational and Graphical Statistics
, vol.9
, Issue.2
, pp. 249-265
-
-
Neal, R.M.1
-
29
-
-
1842486852
-
A split-merge Markov chain Monte Carlo procedure for the dirichlet process mixture model
-
Jain S., Neal R.M. A split-merge Markov chain Monte Carlo procedure for the dirichlet process mixture model. Journal of Computational and Graphical Statistics 2004, 13(1):158-182.
-
(2004)
Journal of Computational and Graphical Statistics
, vol.13
, Issue.1
, pp. 158-182
-
-
Jain, S.1
Neal, R.M.2
|