메뉴 건너뛰기




Volumn 101, Issue 7, 2010, Pages 1728-1737

Sparse Bayesian hierarchical modeling of high-dimensional clustering problems

Author keywords

Dirichlet process; Markov chain Monte Carlo; Sequential sampling; Sparsity prior

Indexed keywords


EID: 77952009834     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2010.03.009     Document Type: Article
Times cited : (6)

References (32)
  • 2
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D., Raftery A.E. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 49(3):803-821.
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 3
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley C., Raftery A.E. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association 2002, 97(458):611-631.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 4
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Luan Y., Li H. Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 2003, 19:474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 5
    • 34249029861 scopus 로고    scopus 로고
    • Penalized model-based clustering with application to variable selection
    • Pan W., Shen X. Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research 2007, 8:1145-1164.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1145-1164
    • Pan, W.1    Shen, X.2
  • 6
    • 49549108208 scopus 로고    scopus 로고
    • Penalized clustering of large scale functional data with multiple covariates
    • Ma P., Zhong W. Penalized clustering of large scale functional data with multiple covariates. Journal of the American Statistical Association 2008, 103(482):625-636.
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.482 , pp. 625-636
    • Ma, P.1    Zhong, W.2
  • 9
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George E.I., McCulloch R.E. Approaches for Bayesian variable selection. Statistica Sinica 1997, 7(2):339-373.
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 11
    • 15044339834 scopus 로고    scopus 로고
    • Bayesian clustering with variable and transformation selection
    • Liu J., Zhang J., Palumbo M., Lawrence C. Bayesian clustering with variable and transformation selection. Bayesian Statistics 2003, 7:249-275.
    • (2003) Bayesian Statistics , vol.7 , pp. 249-275
    • Liu, J.1    Zhang, J.2    Palumbo, M.3    Lawrence, C.4
  • 13
    • 33845734547 scopus 로고    scopus 로고
    • Variable selection in clustering via Dirichlet process mixture models
    • Kim S., Tadesse M.G., Vannucci M. Variable selection in clustering via Dirichlet process mixture models. Biometrika 2006, 93(4):877-893.
    • (2006) Biometrika , vol.93 , Issue.4 , pp. 877-893
    • Kim, S.1    Tadesse, M.G.2    Vannucci, M.3
  • 14
    • 33645992615 scopus 로고    scopus 로고
    • Model-based subspace clustering
    • Hoff P. Model-based subspace clustering. Bayesian Analysis 2006, 1:321-344.
    • (2006) Bayesian Analysis , vol.1 , pp. 321-344
    • Hoff, P.1
  • 16
    • 51249118190 scopus 로고    scopus 로고
    • Of mice and men: sparse statistical modeling in cardiovascular genomics
    • Seo D.M., Goldschmidt-Clermont P.J., West M. Of mice and men: sparse statistical modeling in cardiovascular genomics. Annals of Applied Statistics 2007, 1(1):152-178.
    • (2007) Annals of Applied Statistics , vol.1 , Issue.1 , pp. 152-178
    • Seo, D.M.1    Goldschmidt-Clermont, P.J.2    West, M.3
  • 18
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak C.E. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 1974, 2(6):1152-1174.
    • (1974) The Annals of Statistics , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.E.1
  • 20
    • 77952010557 scopus 로고    scopus 로고
    • BART: Bayesian additive regression trees. Annals of Applied Statistics, (in press).
    • H.A. Chipman, E.I. George, R.E. McCulloch, BART: Bayesian additive regression trees. Annals of Applied Statistics, 2010 (in press).
    • (2010)
    • Chipman, H.A.1    George, E.I.2    McCulloch, R.E.3
  • 22
    • 40249119787 scopus 로고    scopus 로고
    • Predictive performance of Dirichlet process shrinkage methods in linear regression
    • Nott D.J. Predictive performance of Dirichlet process shrinkage methods in linear regression. Computational Statistics & Data Analysis 2008, 52(7):3658-3669.
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.7 , pp. 3658-3669
    • Nott, D.J.1
  • 23
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J., Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 2002, 97(457):77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 24
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas J.G., Olson J.M., Tapscott S.J., Zhao L.P. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Research 2001, 11(7):1227-1236.
    • (2001) Genome Research , vol.11 , Issue.7 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, L.P.4
  • 25
    • 77952012379 scopus 로고    scopus 로고
    • MCLUST version 3 for R: normal mixture modeling and model-based clustering. Technical Report no. 504, Department of Statistics, University of Washington.
    • C. Fraley, A.E. Raftery, MCLUST version 3 for R: normal mixture modeling and model-based clustering. Technical Report no. 504, Department of Statistics, University of Washington (2006).
    • (2006)
    • Fraley, C.1    Raftery, A.E.2
  • 26
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, naive Bayes', and some alternatives when there are many more variables than observations
    • Bickel P.J., Levina E. Some theory for Fisher's linear discriminant function, naive Bayes', and some alternatives when there are many more variables than observations. Bernoulli 2004, 10(6):989-1010.
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 27
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to DNA microarrays
    • Tibshirani R., Hastie T., Narasimhan B., Chu G. Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statistical Science 2003, 18(1):104-117.
    • (2003) Statistical Science , vol.18 , Issue.1 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 28
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture
    • Neal R.M. Markov chain sampling methods for Dirichlet process mixture. Journal of Computational and Graphical Statistics 2000, 9(2):249-265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.M.1
  • 29
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the dirichlet process mixture model
    • Jain S., Neal R.M. A split-merge Markov chain Monte Carlo procedure for the dirichlet process mixture model. Journal of Computational and Graphical Statistics 2004, 13(1):158-182.
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.1 , pp. 158-182
    • Jain, S.1    Neal, R.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.