메뉴 건너뛰기




Volumn 8, Issue 5, 2013, Pages

Cell-Autonomous Function of Runx1 Transcriptionally Regulates Mouse Megakaryocytic Maturation

Author keywords

[No Author keywords available]

Indexed keywords

E1A ASSOCIATED P300 PROTEIN; TRANSCRIPTION FACTOR ETS; TRANSCRIPTION FACTOR GATA; TRANSCRIPTION FACTOR NF E2; TRANSCRIPTION FACTOR RUNX; TRANSCRIPTION FACTOR RUNX1;

EID: 84878161493     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0064248     Document Type: Article
Times cited : (21)

References (40)
  • 1
    • 2942547444 scopus 로고    scopus 로고
    • Core-binding factors in hematopoiesis and immune function
    • De Brujin M, Speck NA, (2004) Core-binding factors in hematopoiesis and immune function. Oncogene 23: 4238-4248.
    • (2004) Oncogene , vol.23 , pp. 4238-4248
    • De Brujin, M.1    Speck, N.A.2
  • 2
    • 0037321711 scopus 로고    scopus 로고
    • The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications
    • Asou N, (2003) The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 45: 129-150.
    • (2003) Crit Rev Oncol Hematol , vol.45 , pp. 129-150
    • Asou, N.1
  • 3
    • 84870437993 scopus 로고    scopus 로고
    • RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with poor prognosis and up-regulation of lymphoid genes
    • Greif PA, Konstandin NP, Metzeler KH, Herold T, Pasalic Z, et al. (2012) RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with poor prognosis and up-regulation of lymphoid genes. Haematologica.
    • (2012) Haematologica
    • Greif, P.A.1    Konstandin, N.P.2    Metzeler, K.H.3    Herold, T.4    Pasalic, Z.5
  • 4
    • 22144447520 scopus 로고    scopus 로고
    • Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype
    • Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, et al. (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106: 494-504.
    • (2005) Blood , vol.106 , pp. 494-504
    • Growney, J.D.1    Shigematsu, H.2    Li, Z.3    Lee, B.H.4    Adelsperger, J.5
  • 5
    • 2342451948 scopus 로고    scopus 로고
    • AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis
    • Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, et al. (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10: 299-304.
    • (2004) Nat Med , vol.10 , pp. 299-304
    • Ichikawa, M.1    Asai, T.2    Saito, T.3    Seo, S.4    Yamazaki, I.5
  • 6
    • 35348881438 scopus 로고    scopus 로고
    • Transcriptional control of megakaryocyte development
    • Goldfarb AN, (2007) Transcriptional control of megakaryocyte development. Oncogene 26: 6795-6802.
    • (2007) Oncogene , vol.26 , pp. 6795-6802
    • Goldfarb, A.N.1
  • 7
    • 58549104795 scopus 로고    scopus 로고
    • A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis
    • Ben-Ami O, Pencovich N, Lotem J, Levanon D, Groner1 Yoram, (2009) A regulatory interplay between miR-27a and Runx1 during megakaryopoiesis. PNAS 106: 238-243.
    • (2009) PNAS , vol.106 , pp. 238-243
    • Ben-Ami, O.1    Pencovich, N.2    Lotem, J.3    Levanon, D.4    Groner, Y.5
  • 8
    • 78650991254 scopus 로고    scopus 로고
    • Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models
    • Pencovich N, Jaschek R, Tanay A, Groner Y (2011) Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models. Blood.
    • (2011) Blood
    • Pencovich, N.1    Jaschek, R.2    Tanay, A.3    Groner, Y.4
  • 9
    • 0032830638 scopus 로고    scopus 로고
    • Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukamia
    • Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, et al. (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukamia. Nat Genet 23: 166-175.
    • (1999) Nat Genet , vol.23 , pp. 166-175
    • Song, W.J.1    Sullivan, M.G.2    Legare, R.D.3    Hutchings, S.4    Tan, X.5
  • 10
    • 0036636857 scopus 로고    scopus 로고
    • Core-binding factors in haematopoiesis and leukaemia
    • Speck N, Gilliland DG, (2002) Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2: 502-513.
    • (2002) Nat Rev Cancer , vol.2 , pp. 502-513
    • Speck, N.1    Gilliland, D.G.2
  • 11
    • 0033780541 scopus 로고    scopus 로고
    • The management of neoplastic disorders of haematopoiesis in children with Down's syndrome
    • Lange B, (2000) The management of neoplastic disorders of haematopoiesis in children with Down's syndrome. Br J Haematol 110: 512-524.
    • (2000) Br J Haematol , vol.110 , pp. 512-524
    • Lange, B.1
  • 12
    • 0038819114 scopus 로고    scopus 로고
    • RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation
    • Elagib KE, Racke FK, Mogass M, Khetawat R, Delehanty LL, et al. (2003) RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101: 4333-4341.
    • (2003) Blood , vol.101 , pp. 4333-4341
    • Elagib, K.E.1    Racke, F.K.2    Mogass, M.3    Khetawat, R.4    Delehanty, L.L.5
  • 13
    • 66749167128 scopus 로고    scopus 로고
    • Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb
    • Goldfarb AN, (2009) Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb. J Cell Biochem 107: 377-382.
    • (2009) J Cell Biochem , vol.107 , pp. 377-382
    • Goldfarb, A.N.1
  • 14
    • 0025322835 scopus 로고
    • Structural and functional comparison of the genes for human platelet factor 4 and PF4alt
    • Eisman R, Surrey S, Ramachandran B, Schwartz E, Poncz M, (1990) Structural and functional comparison of the genes for human platelet factor 4 and PF4alt. Blood 76: 336-344.
    • (1990) Blood , vol.76 , pp. 336-344
    • Eisman, R.1    Surrey, S.2    Ramachandran, B.3    Schwartz, E.4    Poncz, M.5
  • 16
    • 33846911975 scopus 로고    scopus 로고
    • Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo
    • Tiedt R, Schomber T, Hao-Shen H, Skoda RC, (2007) Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 109: 1503-1506.
    • (2007) Blood , vol.109 , pp. 1503-1506
    • Tiedt, R.1    Schomber, T.2    Hao-Shen, H.3    Skoda, R.C.4
  • 17
    • 60149091656 scopus 로고    scopus 로고
    • ChIP-seq accurately predicts tissue-specific activity of enhancers
    • Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, et al. (2009) ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457: 854-858.
    • (2009) Nature , vol.457 , pp. 854-858
    • Visel, A.1    Blow, M.J.2    Li, Z.3    Zhang, T.4    Akiyama, J.A.5
  • 18
    • 37249025769 scopus 로고    scopus 로고
    • NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo
    • Fock EL, Yan F, Pan S, Chong BH, (2008) NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo. Exp Hematol 36: 78-92.
    • (2008) Exp Hematol , vol.36 , pp. 78-92
    • Fock, E.L.1    Yan, F.2    Pan, S.3    Chong, B.H.4
  • 19
    • 0036383304 scopus 로고    scopus 로고
    • Gene expression profile of megakaryocytes from human cord blood CD34(+) cells ex vivo expanded by thrombopoietin
    • Kim JA, Jung YJ, Seoh JY, Woo SY, Seo JS, et al. (2002) Gene expression profile of megakaryocytes from human cord blood CD34(+) cells ex vivo expanded by thrombopoietin. Stem Cells 20: 402-416.
    • (2002) Stem Cells , vol.20 , pp. 402-416
    • Kim, J.A.1    Jung, Y.J.2    Seoh, J.Y.3    Woo, S.Y.4    Seo, J.S.5
  • 20
    • 77956572427 scopus 로고    scopus 로고
    • Culture, expansion, and differentiation of murine megakaryocytes
    • Chapter 22:: Unit 22F
    • Shivdasani RA, Schulze H (2005) Culture, expansion, and differentiation of murine megakaryocytes. Curr Protoc Immunol Chapter 22:Unit 22F 26.
    • (2005) Curr Protoc Immunol , pp. 26
    • Shivdasani, R.A.1    Schulze, H.2
  • 21
    • 0036724187 scopus 로고    scopus 로고
    • Mechanism of rapid transcriptional induction of tumor necrosis factor alpha-responsive genes by NF-kappaB
    • Ainbinder E, Revach M, Wolstein O, Moshonov S, Diamant N, et al. (2002) Mechanism of rapid transcriptional induction of tumor necrosis factor alpha-responsive genes by NF-kappaB. Mol Cell Biol 22: 6354-6362.
    • (2002) Mol Cell Biol , vol.22 , pp. 6354-6362
    • Ainbinder, E.1    Revach, M.2    Wolstein, O.3    Moshonov, S.4    Diamant, N.5
  • 22
    • 7344248552 scopus 로고    scopus 로고
    • Expression of AML1-d, a short human AML1 isoform, in embryonic stem cells suppresses in vivo tumor growth and differentiation
    • Aziz-Aloya RB, Levanon D, Karn H, Kidron D, Goldenberg D, et al. (1998) Expression of AML1-d, a short human AML1 isoform, in embryonic stem cells suppresses in vivo tumor growth and differentiation. Cell Death Differ 5: 765-773.
    • (1998) Cell Death Differ , vol.5 , pp. 765-773
    • Aziz-Aloya, R.B.1    Levanon, D.2    Karn, H.3    Kidron, D.4    Goldenberg, D.5
  • 23
    • 23944447124 scopus 로고    scopus 로고
    • Conditional overexpression of transgenes in megakaryocytes and platelets in vivo
    • Nguyen HG, Yu G, Makitalo M, Yang D, Xie HX, et al. (2005) Conditional overexpression of transgenes in megakaryocytes and platelets in vivo. Blood 106: 1559-1564.
    • (2005) Blood , vol.106 , pp. 1559-1564
    • Nguyen, H.G.1    Yu, G.2    Makitalo, M.3    Yang, D.4    Xie, H.X.5
  • 25
    • 84866307474 scopus 로고    scopus 로고
    • MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation
    • Smith EC, Thon JN, Devine MT, Lin S, Schulz VP, et al. (2012) MKL1 and MKL2 play redundant and crucial roles in megakaryocyte maturation and platelet formation. Blood.
    • (2012) Blood
    • Smith, E.C.1    Thon, J.N.2    Devine, M.T.3    Lin, S.4    Schulz, V.P.5
  • 26
    • 77956918953 scopus 로고    scopus 로고
    • Serum response factor is an essential transcription factor in megakaryocytic maturation
    • Halene S, Gao Y, Hahn K, Massaro S, Italiano JEz Jr, et al. (2010) Serum response factor is an essential transcription factor in megakaryocytic maturation. Blood 116: 1942-1950.
    • (2010) Blood , vol.116 , pp. 1942-1950
    • Halene, S.1    Gao, Y.2    Hahn, K.3    Massaro, S.4    Italiano Jr., J.E.5
  • 27
    • 83055179245 scopus 로고    scopus 로고
    • Pleiotropic platelet defects in mice with disrupted FOG1-NuRD interaction
    • Wang Y, Meng R, Hayes V, Fuentes R, Yu X, et al. (2011) Pleiotropic platelet defects in mice with disrupted FOG1-NuRD interaction. Blood 118: 6183-6191.
    • (2011) Blood , vol.118 , pp. 6183-6191
    • Wang, Y.1    Meng, R.2    Hayes, V.3    Fuentes, R.4    Yu, X.5
  • 28
    • 77950986252 scopus 로고    scopus 로고
    • Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage
    • Randrianarison-Huetz V, Laurent B, Bardet V, Blobe GC, Huetz F, et al. (2010) Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage. Blood 115: 2784-2795.
    • (2010) Blood , vol.115 , pp. 2784-2795
    • Randrianarison-Huetz, V.1    Laurent, B.2    Bardet, V.3    Blobe, G.C.4    Huetz, F.5
  • 29
    • 78649344756 scopus 로고    scopus 로고
    • Proplatelet formation deficit and megakaryocyte death contribute to thrombocytopenia in Myh9 knockout mice
    • Eckly A, Rinckel JY, Laeuffer P, Cazenave JP, Lanza F, et al. (2010) Proplatelet formation deficit and megakaryocyte death contribute to thrombocytopenia in Myh9 knockout mice. J Thromb Haemost 8: 2243-2251.
    • (2010) J Thromb Haemost , vol.8 , pp. 2243-2251
    • Eckly, A.1    Rinckel, J.Y.2    Laeuffer, P.3    Cazenave, J.P.4    Lanza, F.5
  • 30
    • 8644224220 scopus 로고    scopus 로고
    • Megakaryocyte proliferation and ploidy regulated by the cytoplasmic tail of glycoprotein Ibalpha
    • Kanaji T, Russell S, Cunningham J, Izuhara K, Fox JE, et al. (2004) Megakaryocyte proliferation and ploidy regulated by the cytoplasmic tail of glycoprotein Ibalpha. Blood 104: 3161-3168.
    • (2004) Blood , vol.104 , pp. 3161-3168
    • Kanaji, T.1    Russell, S.2    Cunningham, J.3    Izuhara, K.4    Fox, J.E.5
  • 31
    • 37549064277 scopus 로고    scopus 로고
    • Talin is required for integrin-mediated platelet function in hemostasis and thrombosis
    • Petrich BG, Marchese P, Ruggeri ZM, Spiess S, Weichert RA, et al. (2007) Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 204: 3103-3111.
    • (2007) J Exp Med , vol.204 , pp. 3103-3111
    • Petrich, B.G.1    Marchese, P.2    Ruggeri, Z.M.3    Spiess, S.4    Weichert, R.A.5
  • 32
    • 69449085219 scopus 로고    scopus 로고
    • GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells
    • Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, et al. (2009) GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 106: 13445-13450.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 13445-13450
    • Tran, D.Q.1    Andersson, J.2    Wang, R.3    Ramsey, H.4    Unutmaz, D.5
  • 33
    • 34548829636 scopus 로고    scopus 로고
    • Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A
    • Zhang W, Colman RW, (2007) Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A. Blood 110: 1475-1482.
    • (2007) Blood , vol.110 , pp. 1475-1482
    • Zhang, W.1    Colman, R.W.2
  • 34
    • 0030307598 scopus 로고    scopus 로고
    • The role of transcription factor NF-E2 in megakaryocyte maturation and platelet production
    • Shivdasani RA, (1996) The role of transcription factor NF-E2 in megakaryocyte maturation and platelet production. Stem Cells 14Suppl 1: 112-115.
    • (1996) Stem Cells , vol.14 , pp. 112-115
    • Shivdasani, R.A.1
  • 35
    • 0034812344 scopus 로고    scopus 로고
    • Molecular and transcriptional regulation of megakaryocyte differentiation
    • Shivdasani RA, (2001) Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells 19: 397-407.
    • (2001) Stem Cells , vol.19 , pp. 397-407
    • Shivdasani, R.A.1
  • 36
    • 84891731064 scopus 로고    scopus 로고
    • Differential localization of P-selectin and von Willebrand factor during megakaryocyte maturation
    • Zingariello M, Fabucci M, Bosco D, Migliaccio A, Martelli F, et al. (2009) Differential localization of P-selectin and von Willebrand factor during megakaryocyte maturation. Biotech Histochem: 1-14.
    • (2009) Biotech Histochem , pp. 1-14
    • Zingariello, M.1    Fabucci, M.2    Bosco, D.3    Migliaccio, A.4    Martelli, F.5
  • 37
    • 67149099806 scopus 로고    scopus 로고
    • The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters
    • Bee T, Ashley EL, Bickley SR, Jarratt A, Li PS, et al. (2009) The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood 113: 5121-5124.
    • (2009) Blood , vol.113 , pp. 5121-5124
    • Bee, T.1    Ashley, E.L.2    Bickley, S.R.3    Jarratt, A.4    Li, P.S.5
  • 39
  • 40


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.