메뉴 건너뛰기




Volumn 26, Issue 7, 2013, Pages 1751-1760

Remaining useful life estimation based on nonlinear feature reduction and support vector regression

Author keywords

Isometric feature mapping; Prognostics and health management; Remaining useful life; Support vector regression

Indexed keywords

DEGRADATION MODEL; ISOMETRIC FEATURE MAPPING; MECHANICAL EQUIPMENT; NONLINEAR FEATURES; PROGNOSTICS AND HEALTH MANAGEMENTS; REDUCTION TECHNIQUES; REMAINING USEFUL LIVES; SUPPORT VECTOR REGRESSION (SVR);

EID: 84878107122     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2013.02.006     Document Type: Article
Times cited : (335)

References (24)
  • 2
    • 0000913324 scopus 로고    scopus 로고
    • SVMTorch: Support Vector Machines for large-scale regression problems
    • R. Collobert, and S. Bengio SVMTorch support vector machines for large-scale regression problems J. Mach. Learn. Res. 1 1 2001 143 160 (Pubitemid 33738779)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.2 , pp. 143-160
    • Collobert, R.1    Bengio, S.2
  • 4
    • 2942659638 scopus 로고    scopus 로고
    • Residual life predictions from vibration-based degradation signals a neural network approach
    • N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran Residual life predictions from vibration-based degradation signals a neural network approach IEEE Trans. Ind. Electron. 51 2004 694 700
    • (2004) IEEE Trans. Ind. Electron. , vol.51 , pp. 694-700
    • Gebraeel, N.1    Lawley, M.2    Liu, R.3    Parmeshwaran, V.4
  • 5
    • 34250195361 scopus 로고    scopus 로고
    • Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model
    • Haitao, L.; Wenbiao, Z.; Huairui, 2006. Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model, in: Reliability and Maintainability Symposium, RAMS'06, pp. 127-132.
    • (2006) Reliability and Maintainability Symposium, RAMS'06 , pp. 127-132
    • Haitao, L.1    Wenbiao, Z.2    Huairui3
  • 6
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics state of the art, challenges and opportunities
    • A. Heng, S. Zhang, A.C.C. Tan, and J. Mathew Rotating machinery prognostics state of the art, challenges and opportunities Mech. Syst. Signal Process. 23 3 2009 724 739
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.3 , pp. 724-739
    • Heng, A.1    Zhang, S.2    Tan, A.C.C.3    Mathew, J.4
  • 7
    • 33749663808 scopus 로고    scopus 로고
    • Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
    • DOI 10.1016/j.ymssp.2005.11.008, PII S0888327005002165
    • R. Huang, L. Xi, X. Li, C. Liu, H. Qiu, and J. Lee Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods Mech. Syst. Signal Process. 21 1 2007 193 207 (Pubitemid 44550081)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.1 , pp. 193-207
    • Huang, R.1    Xi, L.2    Li, X.3    Richard Liu, C.4    Qiu, H.5    Lee, J.6
  • 9
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Mech. Syst. Signal Process. 20 7 2006 1483 1510
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.1    Lin, D.2    Banjevic, D.3
  • 11
    • 67849106386 scopus 로고    scopus 로고
    • A novel method for machine performance degradation assessment based on fixed cycle features test
    • L. Liao, and J. Lee A novel method for machine performance degradation assessment based on fixed cycle features test J. Sound Vib. 326 2009 894 908
    • (2009) J. Sound Vib. , vol.326 , pp. 894-908
    • Liao, L.1    Lee, J.2
  • 12
    • 58049179543 scopus 로고    scopus 로고
    • Condition evaluation for mechanical equipment by means of support vector data description
    • L. Lingjun, H. Jie, H. Wei, D. Xinmin, and H. Zhengjia Condition evaluation for mechanical equipment by means of support vector data description Chin. J. Mech. Sci. Technol. 24 12 2005 1426 1429
    • (2005) Chin. J. Mech. Sci. Technol. , vol.24 , Issue.12 , pp. 1426-1429
    • Lingjun, L.1    Jie, H.2    Wei, H.3    Xinmin, D.4    Zhengjia, H.5
  • 14
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • A. Malhi, and R. Gao PCA-based feature selection scheme for machine defect classification IEEE Trans. Instrum. Meas. 53 2004 1517 1525
    • (2004) IEEE Trans. Instrum. Meas. , vol.53 , pp. 1517-1525
    • Malhi, A.1    Gao, R.2
  • 15
    • 84861911833 scopus 로고    scopus 로고
    • Remaining useful life estimation of critical components with application to bearings
    • K. Medjaher, D.A. Tobon-Mejia, and N. Zerhouni Remaining useful life estimation of critical components with application to bearings IEEE Trans. Reliab. 61 2 2012 292 302
    • (2012) IEEE Trans. Reliab. , vol.61 , Issue.2 , pp. 292-302
    • Medjaher, K.1    Tobon-Mejia, D.A.2    Zerhouni, N.3
  • 16
    • 33646162415 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the ISOMAP algorithm
    • O. Samko, A. Marshall, and P. Rosin Selection of the optimal parameter value for the ISOMAP algorithm Pattern Recognition Lett. 27 9 2006 968 979
    • (2006) Pattern Recognition Lett. , vol.27 , Issue.9 , pp. 968-979
    • Samko, O.1    Marshall, A.2    Rosin, P.3
  • 18
    • 0033721855 scopus 로고    scopus 로고
    • Prognosis of remaining bearing life using neural networks
    • Y. Shao, and K. Nezu Prognosis of remaining bearing life using neural networks J. Syst. Control Eng. Part I 214 3 2000 217 230
    • (2000) J. Syst. Control Eng. Part i , vol.214 , Issue.3 , pp. 217-230
    • Shao, Y.1    Nezu, K.2
  • 19
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. De Silva, and J.C. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 2000 2319 2323 (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 20
    • 84857368939 scopus 로고    scopus 로고
    • CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks
    • D.A. Tobon-Mejia, K. Medjaher, and N. Zerhouni CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks Mech. Syst. Signal Process. 28 2012 167 182
    • (2012) Mech. Syst. Signal Process. , vol.28 , pp. 167-182
    • Tobon-Mejia, D.A.1    Medjaher, K.2    Zerhouni, N.3
  • 22
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • V. Vapnik, S. Golowich, and A. Smola Support vector method for function approximation, regression estimation, and signal processing Adv. Neural Inf. Process. Syst. 9 1997 281 287
    • (1997) Adv. Neural Inf. Process. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 23
    • 0034375291 scopus 로고    scopus 로고
    • Bearing diagnostics based on pattern recognition of statistical parameters
    • F. Xi, Q. Sun, and G. Krishnappa Bearing diagnostics based on pattern recognition of statistical parameters J. Vib. Control 6 2000 75 92
    • (2000) J. Vib. Control , vol.6 , pp. 75-92
    • Xi, F.1    Sun, Q.2    Krishnappa, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.