-
1
-
-
84916537550
-
Bayesian analysis of binary and polychotomous response data
-
J. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. J. of the Am. Stat. Assoc., 88(422):669-679, 1993.
-
(1993)
J. of the Am. Stat. Assoc.
, vol.88
, Issue.422
, pp. 669-679
-
-
Albert, J.1
Chib, S.2
-
5
-
-
77952563025
-
Variational inference for large-scale models of discrete choice
-
M. Braun and J. McAuliffe. Variational inference for large-scale models of discrete choice. Journal of the American Statistical Association, 105(489):324-335, 2010.
-
(2010)
Journal of the American Statistical Association
, vol.105
, Issue.489
, pp. 324-335
-
-
Braun, M.1
McAuliffe, J.2
-
7
-
-
0001038826
-
Covariance selection
-
A. Dempster. Covariance selection. Biometrics, 28(1), 1972.
-
(1972)
Biometrics
, vol.28
, Issue.1
-
-
Dempster, A.1
-
8
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432, 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
10
-
-
33745841370
-
Variational Bayesian multinomial probit regression with Gaussian process priors
-
M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Comptuation, 18(8):1790-1817, 2006.
-
(2006)
Neural Comptuation
, vol.18
, Issue.8
, pp. 1790-1817
-
-
Girolami, M.1
Rogers, S.2
-
11
-
-
84867151416
-
Bayesian auxiliary variable models for binary and multinomial regression
-
C. Holmes and L. Held. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1):145-168, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.1
, pp. 145-168
-
-
Holmes, C.1
Held, L.2
-
12
-
-
33749044832
-
A variational approach to Bayesian logistic regression problems and their extensions
-
T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their extensions. In AI + Statistics, 1996.
-
(1996)
AI + Statistics
-
-
Jaakkola, T.1
Jordan, M.2
-
15
-
-
25444528713
-
Assessing approximate inference for binary Gaussian process classification
-
M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. J. of Machine Learning Research, 6:1679-1704, 2005.
-
(2005)
J. of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
16
-
-
80053441013
-
Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models
-
B. Marlin, M. Khan, and K. Murphy. Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models. In Intl. Conf. on Machine Learning, 2011.
-
(2011)
Intl. Conf. on Machine Learning
-
-
Marlin, B.1
Khan, M.2
Murphy, K.3
-
17
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
T. Minka. Expectation propagation for approximate Bayesian inference. In UAI, 2001.
-
(2001)
UAI
-
-
Minka, T.1
-
19
-
-
63249135864
-
The variational Gaussian approximation revisited
-
M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
21
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations
-
H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. J. of Royal Stat. Soc. Series B, 71: 319-392, 2009.
-
(2009)
J. of Royal Stat. Soc. Series B
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
22
-
-
79951767740
-
Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models
-
S. L. Scott. Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models. Statistical Papers, 52(1):87-109, 2011.
-
(2011)
Statistical Papers
, vol.52
, Issue.1
, pp. 87-109
-
-
Scott, S.L.1
-
23
-
-
44649181578
-
Bayesian inference and optimal design in the sparse linear model
-
M. Seeger. Bayesian Inference and Optimal Design in the Sparse Linear Model. J. of Machine Learning Research, 9:759-813, 2008.
-
(2008)
J. of Machine Learning Research
, vol.9
, pp. 759-813
-
-
Seeger, M.1
|