메뉴 건너뛰기




Volumn 4, Issue , 2012, Pages 3140-3148

Fast Bayesian inference for non-conjugate Gaussian process regression

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE INFERENCE; BAYESIAN INFERENCE; GAUSSIAN PROCESS REGRESSION; GUARANTEED CONVERGENCE; LIKELIHOOD FUNCTIONS; MULTI-CLASS CLASSIFICATION; VARIATIONAL INFERENCE; VARIATIONAL METHODS;

EID: 84877761920     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (24)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • J. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. J. of the Am. Stat. Assoc., 88(422):669-679, 1993.
    • (1993) J. of the Am. Stat. Assoc. , vol.88 , Issue.422 , pp. 669-679
    • Albert, J.1    Chib, S.2
  • 5
    • 77952563025 scopus 로고    scopus 로고
    • Variational inference for large-scale models of discrete choice
    • M. Braun and J. McAuliffe. Variational inference for large-scale models of discrete choice. Journal of the American Statistical Association, 105(489):324-335, 2010.
    • (2010) Journal of the American Statistical Association , vol.105 , Issue.489 , pp. 324-335
    • Braun, M.1    McAuliffe, J.2
  • 7
    • 0001038826 scopus 로고
    • Covariance selection
    • A. Dempster. Covariance selection. Biometrics, 28(1), 1972.
    • (1972) Biometrics , vol.28 , Issue.1
    • Dempster, A.1
  • 8
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 33745841370 scopus 로고    scopus 로고
    • Variational Bayesian multinomial probit regression with Gaussian process priors
    • M. Girolami and S. Rogers. Variational Bayesian multinomial probit regression with Gaussian process priors. Neural Comptuation, 18(8):1790-1817, 2006.
    • (2006) Neural Comptuation , vol.18 , Issue.8 , pp. 1790-1817
    • Girolami, M.1    Rogers, S.2
  • 11
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • C. Holmes and L. Held. Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1):145-168, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 145-168
    • Holmes, C.1    Held, L.2
  • 12
    • 33749044832 scopus 로고    scopus 로고
    • A variational approach to Bayesian logistic regression problems and their extensions
    • T. Jaakkola and M. Jordan. A variational approach to Bayesian logistic regression problems and their extensions. In AI + Statistics, 1996.
    • (1996) AI + Statistics
    • Jaakkola, T.1    Jordan, M.2
  • 15
    • 25444528713 scopus 로고    scopus 로고
    • Assessing approximate inference for binary Gaussian process classification
    • M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. J. of Machine Learning Research, 6:1679-1704, 2005.
    • (2005) J. of Machine Learning Research , vol.6 , pp. 1679-1704
    • Kuss, M.1    Rasmussen, C.E.2
  • 16
    • 80053441013 scopus 로고    scopus 로고
    • Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models
    • B. Marlin, M. Khan, and K. Murphy. Piecewise bounds for estimating Bernoulli-logistic latent Gaussian models. In Intl. Conf. on Machine Learning, 2011.
    • (2011) Intl. Conf. on Machine Learning
    • Marlin, B.1    Khan, M.2    Murphy, K.3
  • 17
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • T. Minka. Expectation propagation for approximate Bayesian inference. In UAI, 2001.
    • (2001) UAI
    • Minka, T.1
  • 19
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 21
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations
    • H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. J. of Royal Stat. Soc. Series B, 71: 319-392, 2009.
    • (2009) J. of Royal Stat. Soc. Series B , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 22
    • 79951767740 scopus 로고    scopus 로고
    • Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models
    • S. L. Scott. Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models. Statistical Papers, 52(1):87-109, 2011.
    • (2011) Statistical Papers , vol.52 , Issue.1 , pp. 87-109
    • Scott, S.L.1
  • 23
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design in the sparse linear model
    • M. Seeger. Bayesian Inference and Optimal Design in the Sparse Linear Model. J. of Machine Learning Research, 9:759-813, 2008.
    • (2008) J. of Machine Learning Research , vol.9 , pp. 759-813
    • Seeger, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.