메뉴 건너뛰기




Volumn 52, Issue 1, 2011, Pages 87-109

Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models

(1)  Scott, Steven L a  

a NONE

Author keywords

Discrete choice model; Gibbs sampler; Logistic regression; Markov chain Monte Carlo; Metropolis Hastings; Multinomial Poisson transformation; Partial credit model; Polychotomous; Polytomous

Indexed keywords


EID: 79951767740     PISSN: 09325026     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00362-009-0205-0     Document Type: Article
Times cited : (30)

References (51)
  • 1
    • 0033430574 scopus 로고    scopus 로고
    • A generalized additive model for discrete-choice data
    • Abe M (1999) A generalized additive model for discrete-choice data. J Bus Econ Stat 17: 271-284.
    • (1999) J Bus Econ Stat , vol.17 , pp. 271-284
    • Abe, M.1
  • 3
    • 0001248506 scopus 로고
    • A Bayesian estimation of normal ogive item response curves using Gibbs sampling
    • Albert J (1992) A Bayesian estimation of normal ogive item response curves using Gibbs sampling. J Educ Stat 17: 251-269.
    • (1992) J Educ Stat , vol.17 , pp. 251-269
    • Albert, J.1
  • 4
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert JH, Chib S (1993) Bayesian analysis of binary and polychotomous response data. J Am Stat Assoc 88: 669-679.
    • (1993) J Am Stat Assoc , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 5
    • 0012947694 scopus 로고    scopus 로고
    • The NAEP 1998 technical report
    • NCES 2001-509, United States Department of Education
    • Allen NL, Donoghue JR, Schoeps TL (2000) The NAEP 1998 technical report. Tech. Rep. NCES 2001-509, United States Department of Education.
    • (2000) Tech. Rep.
    • Allen, N.L.1    Donoghue, J.R.2    Schoeps, T.L.3
  • 6
    • 0039477681 scopus 로고
    • The multinomial-Poisson transformation
    • Baker SG (1994) The multinomial-Poisson transformation. The Statistician 43: 495-504.
    • (1994) The Statistician , vol.43 , pp. 495-504
    • Baker, S.G.1
  • 7
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
    • Barnard J, McCulloch R, Meng X-L (2000) Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Stat Sin 10(4): 1281-1311.
    • (2000) Stat Sin , vol.10 , Issue.4 , pp. 1281-1311
    • Barnard, J.1    McCulloch, R.2    Meng, X.-L.3
  • 8
    • 0033239554 scopus 로고    scopus 로고
    • A Bayesian random effects model for testlets
    • Bradlow ET, Wainer H, Wang X (1999) A Bayesian random effects model for testlets. Psychometrika 64(2): 153-168.
    • (1999) Psychometrika , vol.64 , Issue.2 , pp. 153-168
    • Bradlow, E.T.1    Wainer, H.2    Wang, X.3
  • 9
    • 0035635920 scopus 로고    scopus 로고
    • A note on the estimation of multinomial logit models with random effects
    • Chen Z, Kuo L (2001) A note on the estimation of multinomial logit models with random effects. Am Stat 55: 89-95.
    • (2001) Am Stat , vol.55 , pp. 89-95
    • Chen, Z.1    Kuo, L.2
  • 10
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm. Am Stat 49: 327-335.
    • (1995) Am Stat , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (C/R: p 22-37)
    • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (C/R: p 22-37). J R Stat Soc Ser B Methodol 39: 1-22.
    • (1977) J R Stat Soc Ser B Methodol , vol.39 , pp. 1-22
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 33845778635 scopus 로고    scopus 로고
    • Auxiliary mixture sampling with applications to logistic models
    • Frühwirth-Schnatter S, Frühwirth R (2007) Auxiliary mixture sampling with applications to logistic models. Comput Stat Data Anal 51: 3509-3528.
    • (2007) Comput Stat Data Anal , vol.51 , pp. 3509-3528
    • Frühwirth-Schnatter, S.1    Frühwirth, R.2
  • 15
    • 33845796064 scopus 로고    scopus 로고
    • Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling
    • Frühwirth-Schnatter S, Wagner H (2006) Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling. Biometrika 93: 827-841.
    • (2006) Biometrika , vol.93 , pp. 827-841
    • Frühwirth-Schnatter, S.1    Wagner, H.2
  • 16
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Gelman A, Gilks WR, Roberts GO (1997) Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann Appl Probab 7(1): 110-120.
    • (1997) Ann Appl Probab , vol.7 , Issue.1 , pp. 110-120
    • Gelman, A.1    Gilks, W.R.2    Roberts, G.O.3
  • 17
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41: 337-348.
    • (1992) Appl Stat , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 19
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 20
    • 85011457569 scopus 로고    scopus 로고
    • Discussion of The art of data augmentation
    • Higdon DM (2001) Discussion of "The art of data augmentation". J Comput Graph Stat 10(1): 69-74.
    • (2001) J Comput Graph Stat , vol.10 , Issue.1 , pp. 69-74
    • Higdon, D.M.1
  • 21
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes CC, Held L (2006) Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Anal 1(1): 145-168.
    • (2006) Bayesian Anal , vol.1 , Issue.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 24
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • Jones GL, Hobert JP (2001) Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Stat Sci 16(4): 312-334.
    • (2001) Stat Sci , vol.16 , Issue.4 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 25
    • 2142841554 scopus 로고    scopus 로고
    • A marginal ergodic theorem
    • J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, and M. West (Eds.), Oxford: Oxford University Press
    • Lavine M (2003) A marginal ergodic theorem. In: Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (eds) Bayesian statistics, vol 7. Oxford University Press, Oxford, pp 577-586.
    • (2003) Bayesian Statistics , vol.7 , pp. 577-586
    • Lavine, M.1
  • 27
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • Liu JS, Wong WH, Kong A (1994) Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika 81: 27-40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 28
    • 0000854270 scopus 로고
    • Covariance structure and convergence rate of the Gibbs sampler with various scans
    • Liu JS, Wong WH, Kong A (1995) Covariance structure and convergence rate of the Gibbs sampler with various scans. J R Stat Soc Ser B Methodol 57: 157-169.
    • (1995) J R Stat Soc Ser B Methodol , vol.57 , pp. 157-169
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 29
    • 0442309501 scopus 로고    scopus 로고
    • Parameter expansion for data augmentation
    • Liu JS, Wu YN (1999) Parameter expansion for data augmentation. J Am Stat Assoc 94: 1264-1274.
    • (1999) J Am Stat Assoc , vol.94 , pp. 1264-1274
    • Liu, J.S.1    Wu, Y.N.2
  • 32
    • 43949158952 scopus 로고
    • An exact likelihood analysis of the multinomial probit model
    • McCulloch R, Rossi PE (1994) An exact likelihood analysis of the multinomial probit model. J Econom 64: 207-240.
    • (1994) J Econom , vol.64 , pp. 207-240
    • McCulloch, R.1    Rossi, P.E.2
  • 33
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behavior
    • P. Zarembka (Ed.), Dublin: Academic Press
    • McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (eds) Frontiers in econometrics. Academic Press, Dublin, pp 105-142.
    • (1974) Frontiers in Econometrics , pp. 105-142
    • McFadden, D.1
  • 34
    • 0000761884 scopus 로고    scopus 로고
    • Seeking efficient data augmentation schemes via conditional and marginal augmentation
    • Meng X-L, van Dyk DA (1999) Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika 86(2): 301-320.
    • (1999) Biometrika , vol.86 , Issue.2 , pp. 301-320
    • Meng, X.-L.1    van Dyk, D.A.2
  • 35
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • Mengersen KL, Tweedie RL (1996) Rates of convergence of the Hastings and Metropolis algorithms. Ann Stat 24: 101-121.
    • (1996) Ann Stat , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 37
    • 84976923244 scopus 로고
    • A generalized partial credit model: application of an EM algorithm
    • Muraki E (1992) A generalized partial credit model: application of an EM algorithm. Appl Psychol Meas 16: 159-176.
    • (1992) Appl Psychol Meas , vol.16 , pp. 159-176
    • Muraki, E.1
  • 38
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal RM (2003) Slice sampling. Ann Stat 31(3): 705-767.
    • (2003) Ann Stat , vol.31 , Issue.3 , pp. 705-767
    • Neal, R.M.1
  • 39
    • 0033411905 scopus 로고    scopus 로고
    • A straightforward approach to Markov Chain Monte Carlo methods for item response models
    • Patz R, Junker BW (1999) A straightforward approach to Markov Chain Monte Carlo methods for item response models. J Educ Behav Stat 24: 146-178.
    • (1999) J Educ Behav Stat , vol.24 , pp. 146-178
    • Patz, R.1    Junker, B.W.2
  • 40
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo (corr: 95v90 p 1136)
    • Rosenthal JS (1995) Minorization conditions and convergence rates for Markov chain Monte Carlo (corr: 95v90 p 1136). J Am Stat Assoc 90: 558-566.
    • (1995) J Am Stat Assoc , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 41
    • 21844489917 scopus 로고
    • The shape of correlation matrices
    • Rousseeuw PJ, Molenberghs G (1994) The shape of correlation matrices. Am Stat 48: 276-279.
    • (1994) Am Stat , vol.48 , pp. 276-279
    • Rousseeuw, P.J.1    Molenberghs, G.2
  • 42
    • 0000439370 scopus 로고
    • Bayesianly justifiable and relevant frequency calculations for the applied statistician
    • Rubin DB (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann Stat 12: 1151-1172.
    • (1984) Ann Stat , vol.12 , pp. 1151-1172
    • Rubin, D.B.1
  • 43
    • 0035998840 scopus 로고    scopus 로고
    • Empirical Bayes and item clustering effects in a latent variable hierarchical model: a case study from the National Assessment of Educational Progress
    • Scott SL, Ip EH (2002) Empirical Bayes and item clustering effects in a latent variable hierarchical model: a case study from the National Assessment of Educational Progress. J Am Stat Assoc 97(458): 409-419.
    • (2002) J Am Stat Assoc , vol.97 , Issue.458 , pp. 409-419
    • Scott, S.L.1    Ip, E.H.2
  • 45
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (c/r: P 541-550)
    • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation (c/r: P 541-550). J Am Stat Assoc 82: 528-540.
    • (1987) J Am Stat Assoc , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 46
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (disc: P1728-1762)
    • Tierney L (1994) Markov chains for exploring posterior distributions (disc: P1728-1762). Ann Stat 22: 1701-1728.
    • (1994) Ann Stat , vol.22 , pp. 1701-1728
    • Tierney, L.1
  • 47
    • 84925068967 scopus 로고    scopus 로고
    • Cambridge University Press, New York. Available at
    • Train KE (2003) Discrete choice methods with simulation. Cambridge University Press, New York. Available at http://elsa. berkeley. edu/books/choice2. html.
    • (2003) Discrete choice methods with simulation
    • Train, K.E.1
  • 48
    • 41949117135 scopus 로고    scopus 로고
    • Bayesian variable selection for logistic models using auxiliary mixture sampling
    • Tüchler R (2008) Bayesian variable selection for logistic models using auxiliary mixture sampling. J Comput Graph Stat 17(1): 76-94.
    • (2008) J Comput Graph Stat , vol.17 , Issue.1 , pp. 76-94
    • Tüchler, R.1
  • 49
    • 0002696801 scopus 로고    scopus 로고
    • The art of data augmentation (disc: P 51-111)
    • van Dyk DA, Meng X-L (2001) The art of data augmentation (disc: P 51-111). J Comput Graph Stat 10: 1-50.
    • (2001) J Comput Graph Stat , vol.10 , pp. 1-50
    • van Dyk, D.A.1    Meng, X.-L.2
  • 50
    • 0002507596 scopus 로고    scopus 로고
    • Testlet response theory: an analog for the 3PL model useful in testlet-based adaptive testing
    • Kluwer Academic Publishers, Dordrecht
    • Wainer H, Bradlow ET, Du Z (2000) Testlet response theory: an analog for the 3PL model useful in testlet-based adaptive testing. In: Computerized adaptive testing: theory and practice. Kluwer Academic Publishers, Dordrecht, pp 245-269.
    • (2000) Computerized adaptive testing: Theory and practice , pp. 245-269
    • Wainer, H.1    Bradlow, E.T.2    Du, Z.3
  • 51
    • 0002639772 scopus 로고    scopus 로고
    • The Bayesian method of moments (BMOM): theory and applications
    • Zellner A (1997) The Bayesian method of moments (BMOM): theory and applications. Adv Econom 12: 85-105.
    • (1997) Adv Econom , vol.12 , pp. 85-105
    • Zellner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.