-
1
-
-
33645505792
-
Convexity, classification, and risk bounds
-
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. J. of the American Stat. Assoc., pages 1-36, 2006.
-
(2006)
J. of the American Stat. Assoc.
, pp. 1-36
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
2
-
-
80053458482
-
Learning scoring functions with order-preserving losses and standardized supervision
-
D. Buffoni, C. Calauzènes, P. Gallinari, and N. Usunier. Learning scoring functions with order-preserving losses and standardized supervision. In Proc. of the Intl. Conf. on Mach. Learn., pages 825-832, 2011.
-
(2011)
Proc. of the Intl. Conf. on Mach. Learn.
, pp. 825-832
-
-
Buffoni, D.1
Calauzènes, C.2
Gallinari, P.3
Usunier, N.4
-
4
-
-
33750338615
-
Adapting ranking svm to document retrieval
-
Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking svm to document retrieval. In Proc. of the ACM SIGIR Conf. on Res. and Dev. in Info. Retr., pages 186-193, 2006.
-
(2006)
Proc. of the ACM SIGIR Conf. on Res. and Dev. in Info. Retr.
, pp. 186-193
-
-
Cao, Y.1
Xu, J.2
Liu, T.-Y.3
Li, H.4
Huang, Y.5
Hon, H.-W.6
-
5
-
-
84865269307
-
How to reverse-engineer quality rankings
-
Sept.
-
A. Chang, C. Rudin, M. Cavaretta, R. Thomas, and G. Chou. How to reverse-engineer quality rankings. Mach. Learn., 88(3):369-398, Sept. 2012.
-
(2012)
Mach. Learn.
, vol.88
, Issue.3
, pp. 369-398
-
-
Chang, A.1
Rudin, C.2
Cavaretta, M.3
Thomas, R.4
Chou, G.5
-
6
-
-
80053460837
-
Yahoo! learning to rank challenge overview
-
O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. J. of Mach. Learn. Res., 14:1-24, 2011.
-
(2011)
J. of Mach. Learn. Res.
, vol.14
, pp. 1-24
-
-
Chapelle, O.1
Chang, Y.2
-
8
-
-
55349114379
-
Statistical analysis of bayes optimal subset ranking
-
D. Cossock and T. Zhang. Statistical analysis of bayes optimal subset ranking. IEEE Trans. Info. Theory, 54:5140-5154, 2008.
-
(2008)
IEEE Trans. Info. Theory
, vol.54
, pp. 5140-5154
-
-
Cossock, D.1
Zhang, T.2
-
10
-
-
84858770497
-
Tighter bounds for structured estimation
-
C. B. Do, Q. Le, C. H. Teo, O. Chapelle, and A. Smola. Tighter bounds for structured estimation. In Proc. of Adv. in Neural Inf. Processing Syst., pages 281-288, 2008.
-
(2008)
Proc. of Adv. in Neural Inf. Processing Syst.
, pp. 281-288
-
-
Do, C.B.1
Le, Q.2
Teo, C.H.3
Chapelle, O.4
Smola, A.5
-
12
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. of Mach. Learn. Res., 4:933-969, 2003.
-
(2003)
J. of Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
13
-
-
52949143827
-
Label ranking by learning pairwise preferences
-
Nov.
-
E. Hullermeier, J. Furnkranz, W. Cheng, and K. Brinker. Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17):1897-1916, Nov. 2008.
-
(2008)
Artificial Intelligence
, vol.172
, Issue.16-17
, pp. 1897-1916
-
-
Hullermeier, E.1
Furnkranz, J.2
Cheng, W.3
Brinker, K.4
-
19
-
-
80053451706
-
Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs
-
C. Scott. Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs. Proc. of the Intl. Conf. on Mach. Learn., pages 153-160, 2011.
-
(2011)
Proc. of the Intl. Conf. on Mach. Learn.
, pp. 153-160
-
-
Scott, C.1
-
20
-
-
34547483052
-
How to compare different loss functions and their risks
-
I. Steinwart. How to compare different loss functions and their risks. Constructive Approximation, 26(2):225-287, 2007.
-
(2007)
Constructive Approximation
, vol.26
, Issue.2
, pp. 225-287
-
-
Steinwart, I.1
-
21
-
-
42549161120
-
Softrank: Optimizing non-smooth rank metrics
-
WSDM '08
-
M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank metrics. In Proceedings of the international conference on Web search and web data mining, WSDM '08, pages 77-86, 2008.
-
(2008)
Proceedings of the International Conference on Web Search and Web Data Mining
, pp. 77-86
-
-
Taylor, M.1
Guiver, J.2
Robertson, S.3
Minka, T.4
-
23
-
-
53149132128
-
Continuity of the bayes risk
-
R. A. Wijsman. Continuity of the bayes risk. The Annals of Math. Stat., 41(3):pp. 1083-1085, 1970.
-
(1970)
The Annals of Math. Stat.
, vol.41
, Issue.3
, pp. 1083-1085
-
-
Wijsman, R.A.1
-
24
-
-
57349175558
-
Directly optimizing evaluation measures in learning to rank
-
SIGIR '08
-
J. Xu, T.-Y. Liu, M. Lu, H. Li, and W.-Y. Ma. Directly optimizing evaluation measures in learning to rank. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '08, pages 107-114, 2008.
-
(2008)
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 107-114
-
-
Xu, J.1
Liu, T.-Y.2
Lu, M.3
Li, H.4
Ma, W.-Y.5
-
25
-
-
36448983903
-
A support vector method for optimizing average precision
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In Proc. of the ACM SIGIR Intl. Conf. on Res. and Dev. in Info. Retr., pages 271-278, 2007.
-
(2007)
Proc. of the ACM SIGIR Intl. Conf. on Res. and Dev. in Info. Retr.
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
-
26
-
-
26944483874
-
Statistical analysis of some multi-category large margin classification methods
-
T. Zhang. Statistical analysis of some multi-category large margin classification methods. J. of Mach. Learn. Res., 5:1225-1251, 2004.
-
(2004)
J. of Mach. Learn. Res.
, vol.5
, pp. 1225-1251
-
-
Zhang, T.1
-
27
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Stat., 32(1):pp. 56-85, 2004.
-
(2004)
The Annals of Stat.
, vol.32
, Issue.1
, pp. 56-85
-
-
Zhang, T.1
|