-
2
-
-
84865232668
-
-
(Almost). Unpublished blog entry at
-
Bajek, E. (2008). (Almost) How the Elias Sports Bureau rankings work. Unpublished blog entry at http:// tigers-thoughts.blogspot.com/2008/07/almost- how-elias-sports-bureau-rankings.html.
-
(2008)
How the Elias Sports Bureau Rankings Work
-
-
Bajek, E.1
-
5
-
-
84865260093
-
Integer optimization methods for supervised ranking
-
Operations Research Center. Working paper available at
-
Bertsimas, D., Chang, A., & Rudin, C. (2011). Integer optimization methods for supervised ranking. MIT DSpace, Operations Research Center. Working paper available at http://dspace.mit.edu/ handle/1721.1/67362.
-
(2011)
MIT DSpace
-
-
Bertsimas, D.1
Chang, A.2
Rudin, C.3
-
7
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to rank: From pairwise approach to listwise approach. In Proceedings of the 24th international conference on machine learning (ICML) (pp. 129-136).
-
(2007)
Proceedings of the 24th International Conference on Machine Learning (ICML)
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
11
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4, 933-969.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
12
-
-
23044527359
-
Thirty years of conjoint analysis: Rreflections and prospects
-
Green, P. E., Krieger, A. M., & Wind, Y. (J.) (2001). Thirty years of conjoint analysis: Reflections and prospects. Interfaces, 31(3), S56-S73. (Pubitemid 33317336)
-
(2001)
Interfaces
, vol.31
, Issue.3 PART 2
-
-
Green, P.E.1
Krieger, A.M.2
Wind, Y.3
-
15
-
-
0002282074
-
A new measure of rank correlation
-
Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81-93.
-
(1938)
Biometrika
, vol.30
, Issue.1-2
, pp. 81-93
-
-
Kendall, M.G.1
-
16
-
-
0034790672
-
Document language models, query models, and risk minimization for information retrieval
-
Lafferty, J., & Zhai, C. (2001). Document language models, query models, and risk minimization for information retrieval. In Proceedings of the 24th annual international ACM SIGIR conference on research and development in information retrieval (pp. 111-119). New York: ACM Press. (Pubitemid 32951063)
-
(2001)
SIGIR Forum (ACM Special Interest Group on Information Retrieval)
, pp. 111-119
-
-
Lafferty, J.1
Zhai, C.2
-
19
-
-
33750340101
-
High accuracy retrieval with multiple nested ranker
-
New York: ACM Press
-
Matveeva, I., Laucius, A., Burges, C., Wong, L., & Burkard, T. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437-444). New York: ACM Press.
-
(2006)
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 437-444
-
-
Matveeva, I.1
Laucius, A.2
Burges, C.3
Wong, L.4
Burkard, T.5
-
20
-
-
84865235329
-
-
New York Times Business Section April 24, 2010. Article at
-
Morgenson, G., & Story, L. (2010). Rating agency data aided wall street in deals. New York Times, Business section, April 24, 2010. Article at http://www.nytimes.com/2010/04/24/business/24rating.html.
-
(2010)
Rating Agency Data Aided Wall Street In Deals
-
-
Morgenson, G.1
Story, L.2
-
21
-
-
70450239631
-
The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of the list
-
Rudin, C. (2009). The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research, 10, 2233-2271.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2233-2271
-
-
Rudin, C.1
-
22
-
-
78649895829
-
How to improve your Google ranking: Myths and reality
-
Su, A.-J., Hu, Y. C., Kuzmanovic, A., & Koh, C.-K. (2010). How to improve your Google ranking: Myths and reality. In IEEE/WIC/ACMinternational conference on web intelligence and intelligent agent technology (WI-IAT) (Vol. 1, pp. 50-57).
-
(2010)
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)
, vol.1
, pp. 50-57
-
-
Su, A.-J.1
Hu, Y.C.2
Kuzmanovic, A.3
Koh, C.-K.4
-
23
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., & Singer, Y. (2005). Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 6, 1453-1484.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
Singer, Y.5
-
24
-
-
57349175558
-
Directly optimizing evaluation measures in learning to rank
-
New York: ACM Press
-
Xu, J., Liu, T. Y., Lu, M., Li, H., & Ma, W. Y. (2008). Directly optimizing evaluation measures in learning to rank. In Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval. New York: ACM Press.
-
(2008)
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.
-
-
Xu, J.1
Liu, T.Y.2
Lu, M.3
Li, H.4
Ma, W.Y.5
|