-
2
-
-
0008820067
-
An introduction to Neo-Riemannian theory: A survey and historical perspective
-
Cohn R. An introduction to Neo-Riemannian theory: a survey and historical perspective. J. Music Theory. 1998;42:167-180.
-
(1998)
J. Music Theory
, vol.42
, pp. 167-180
-
-
Cohn, R.1
-
3
-
-
60949266789
-
Maximally smooth cycles, hexatonic systems, and the analysis of Late-Romantic triadic progressions
-
Cohn R. Maximally smooth cycles, hexatonic systems, and the analysis of Late-Romantic triadic progressions. Music Anal. 1996;15:9-40.
-
(1996)
Music Anal
, vol.15
, pp. 9-40
-
-
Cohn, R.1
-
4
-
-
33745931702
-
Neo-Riemannian operations, parsimonious trichords, and their Tonnetz representations
-
Cohn R. Neo-Riemannian operations, parsimonious trichords, and their Tonnetz representations. J. Music Theory. 41:1-66.
-
J. Music Theory
, vol.41
, pp. 1-66
-
-
Cohn, R.1
-
5
-
-
70450073941
-
Neo-Riemannian theory and the analysis of Pop-Rock music
-
Capuzzo G. Neo-Riemannian theory and the analysis of Pop-Rock music. Music Theory Spectr. 2004;26:177-200.
-
(2004)
Music Theory Spectr
, vol.26
, pp. 177-200
-
-
Capuzzo, G.1
-
6
-
-
84877784538
-
Flip-flop circles and their groups
-
Douthett J, Hyde M, and Smith C, editors Rochester, NY: University of Rochester Press
-
Douthett J. Flip-flop circles and their groups. In: Douthett J, Hyde M, and Smith C, editors. Music theory and mathematics: chords, collections, and transformations, Eastman studies in music. Rochester, NY: University of Rochester Press; 2008. p. 23-49.
-
(2008)
Music Theory and Mathematics: Chords, Collections, and Transformations, Eastman Studies in Music
, pp. 23-49
-
-
Douthett, J.1
Hyde, M.2
Smith, C.3
-
7
-
-
79960632165
-
Contextual-inversion spaces
-
Straus JN. Contextual-inversion spaces. J. Music Theory 2011;55:43-89.
-
(2011)
J. Music Theory
, vol.55
, pp. 43-89
-
-
Straus, J.N.1
-
8
-
-
60949514414
-
Moving beyond neo-Riemannian triads: Exploring a transformational model for seventh chords
-
Childs AP.Moving beyond neo-Riemannian triads: exploring a transformational model for seventh chords. J. Music Theory. 1998;42:181-193.
-
(1998)
J. Music Theory
, vol.42
, pp. 181-193
-
-
Childs, A.P.1
-
9
-
-
61449161661
-
Some aspects of three-dimensional Tonnetze
-
Gollin E. Some aspects of three-dimensional Tonnetze. J. Music Theory. 1998;42:195-206.
-
(1998)
J. Music Theory
, vol.42
, pp. 195-206
-
-
Gollin, E.1
-
11
-
-
33745922738
-
Uniform triadic transformation
-
Hook J. Uniform triadic transformation. J. Music Theory. 2002;46:57-126.
-
(2002)
J. Music Theory
, vol.46
, pp. 57-126
-
-
Hook, J.1
-
12
-
-
79959589864
-
Signature transformations
-
Douthett J, Hyde M, and Smith C, editors Rochester, NY: University of Rochester Press
-
Hook J. Signature transformations. In: Douthett J, Hyde M, and Smith C, editors. Music theory and mathematics: chords, collections, and transformations, Eastman studies in music. Rochester, NY: University of Rochester Press, 2008. p. 137-161.
-
(2008)
Music Theory and Mathematics: Chords, Collections, and Transformations, Eastman Studies in Music
, pp. 137-161
-
-
Hook, J.1
-
13
-
-
79955600860
-
Wreath products in transformational music theory
-
Peck R. Wreath products in transformational music theory. Perspect. New Music. 2009;47:193-211.
-
(2009)
Perspect. New Music
, vol.47
, pp. 193-211
-
-
Peck, R.1
-
14
-
-
78650440342
-
Imaginary transformations
-
Peck R. Imaginary transformations. J. Math. Music. 2010;4:157-171.
-
(2010)
J. Math. Music
, vol.4
, pp. 157-171
-
-
Peck, R.1
-
17
-
-
84877767236
-
The theory of groups. 2nd ed
-
Providence (RI):AMSChelsea Publishing;
-
Hall M. Jr. The theory of groups. 2nd ed.American Mathematical Society. Providence (RI):AMSChelsea Publishing; 1999.
-
(1999)
American Mathematical Society
-
-
Hall Jr., M.1
-
18
-
-
0004236195
-
-
NewYork Berlin Heidelberg: Springer-Verlag
-
Brown KS. Cohomology of groups. NewYork, Berlin, Heidelberg: Springer-Verlag; 1982.
-
(1982)
Cohomology of Groups
-
-
Brown, K.S.1
-
19
-
-
84877761533
-
-
June [cited 2012 May]. Available from
-
Baez J. This week's finds-week 234 [Internet]. 2006 June [cited 2012 May]. Available from: http://math.ucr. edu/home/baez/week234.html.
-
(2006)
This Week's Finds-week 234 [Internet]
-
-
Baez, J.1
-
21
-
-
0034347035
-
Metacyclic groups
-
Hempel CE. Metacyclic groups. Commun. Algebra 2007;28:3865-3897.
-
(2007)
Commun. Algebra
, vol.28
, pp. 3865-3897
-
-
Hempel, C.E.1
-
23
-
-
61249746770
-
Some structural features of contextually-defined inversion operators
-
Kochavi J. Some structural features of contextually-defined inversion operators. J. Music Theory. 1998;42:307-320.
-
(1998)
J. Music Theory
, vol.42
, pp. 307-320
-
-
Kochavi, J.1
-
25
-
-
79959626737
-
Commuting groups and the topos of triads
-
Agon C, Andreatta M, Assayag G, Amiot E, Bresson J, Mandereau J, editors Springer Lecture Notes in Artificial Intelligence
-
Fiore TM, Noll T. Commuting groups and the topos of triads. In: Agon C, Andreatta M, Assayag G, Amiot E, Bresson J, Mandereau J, editors. Mathematics and computation in music, Third International Conference, MCM 2011. Springer Lecture Notes in Artificial Intelligence, 6726; 2011. p. 69-83.
-
(2011)
Mathematics and Computation in Music, Third International Conference, MCM 2011
, vol.6726
, pp. 69-83
-
-
Fiore, T.M.1
Noll, T.2
-
26
-
-
84870518880
-
Computing second cohomology of finite groups with trivial coefficients
-
Ellis G, Kholodna I. Computing second cohomology of finite groups with trivial coefficients. Homol. Homotopy Appl. 1999;1:163-168.
-
(1999)
Homol. Homotopy Appl
, vol.1
, pp. 163-168
-
-
Ellis, G.1
Kholodna, I.2
-
28
-
-
61949295169
-
Rhythm in the music of Messiaen: An algebraic study and an application in the Turangalila Symphony
-
Hook J. Rhythm in the music of Messiaen: an algebraic study and an application in the Turangalila Symphony. Music Theory Spectr. 1998;20:97-120.
-
(1998)
Music Theory Spectr
, vol.20
, pp. 97-120
-
-
Hook, J.1
-
29
-
-
79955197524
-
Musical durations as mathematical intervals: Some implications for the theory and analysis of rhythm
-
Agmon E. Musical durations as mathematical intervals: some implications for the theory and analysis of rhythm. Music Anal. 1997;16:45-75.
-
(1997)
Music Anal
, vol.16
, pp. 45-75
-
-
Agmon, E.1
-
30
-
-
84857538789
-
An algebra for periodic rhythms and scales
-
Amiot E, SetharesWA. An algebra for periodic rhythms and scales. J. Math. Music. 2011;5:149-169.
-
(2011)
J. Math. Music
, vol.5
, pp. 149-169
-
-
Amiot, E.1
Sethares, W.A.2
-
32
-
-
84966233875
-
Some two-generator one-relator non-Hopfian groups
-
Baumslag G, Solitar D. Some two-generator one-relator non-Hopfian groups. Bull. Am. Math. Soc. 1962;68: 199-201.
-
(1962)
Bull. Am. Math. Soc
, vol.68
, pp. 199-201
-
-
Baumslag, G.1
Solitar, D.2
|