메뉴 건너뛰기




Volumn 4, Issue 3, 2013, Pages 235-243

Minimizing data consumption with sequential online feature selection

Author keywords

Classification; Feature selection; Reinforcement learning

Indexed keywords

CLASSIFICATION TASKS; COST MINIMIZATION; HANDWRITTEN DIGIT; ONLINE FEATURE SELECTION; PROCESSING PROBLEMS; REAL-WORLD INFORMATION; SEQUENTIAL DECISION PROCESS; SUPERVISED CLASSIFICATION;

EID: 84877745731     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-012-0092-x     Document Type: Article
Times cited : (15)

References (25)
  • 2
    • 61849173491 scopus 로고    scopus 로고
    • Gaussian process dynamic programming
    • Deisenroth M, Rasmussen C, Peters J (2009) Gaussian process dynamic programming. Neurocomputing 72(7-9): 1508-1524.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1508-1524
    • Deisenroth, M.1    Rasmussen, C.2    Peters, J.3
  • 4
    • 21844465127 scopus 로고    scopus 로고
    • Tree-based batch mode reinforcement learning
    • Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch mode reinforcement learning. J Mach Learn Res 6(1): 503.
    • (2005) J Mach Learn Res , vol.6 , Issue.1 , pp. 503
    • Ernst, D.1    Geurts, P.2    Wehenkel, L.3
  • 8
    • 0037239496 scopus 로고    scopus 로고
    • Recurrent neural networks for time series classification
    • Hüsken M, Stagge P (2003) Recurrent neural networks for time series classification. Neurocomputing 50: 223-235.
    • (2003) Neurocomputing , vol.50 , pp. 223-235
    • Hüsken, M.1    Stagge, P.2
  • 9
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11): 2278-2324.
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 10
    • 0000123778 scopus 로고
    • Self-improving reactive agents based on reinforcement learning, planning and teaching
    • Lin L (1992) Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach Learn 8(3): 293-321.
    • (1992) Mach Learn , vol.8 , Issue.3 , pp. 293-321
    • Lin, L.1
  • 13
    • 0019909899 scopus 로고
    • A survey of partially observable Markov decision processes: theory, models, and algorithms
    • Monahan G (1982) A survey of partially observable Markov decision processes: theory, models, and algorithms. Manag Sci 1-16.
    • (1982) Manag Sci , pp. 1-16
    • Monahan, G.1
  • 14
    • 70049104729 scopus 로고    scopus 로고
    • Fitted q-iteration by advantage weighted regression
    • Neumann G, Peters J (2009) Fitted q-iteration by advantage weighted regression. Adv Neural Inf Process Syst 21: 1177-1184.
    • (2009) Adv Neural Inf Process Syst , vol.21 , pp. 1177-1184
    • Neumann, G.1    Peters, J.2
  • 16
    • 83755194310 scopus 로고    scopus 로고
    • Attention control with reinforcement learning for face recognition under partial occlusion
    • Norouzi E, Nili Ahmadabadi M, Nadjar Araabi B (2010) Attention control with reinforcement learning for face recognition under partial occlusion. Mach Vis Appl 1-12.
    • (2010) Mach Vis Appl , pp. 1-12
    • Norouzi, E.1    Nili Ahmadabadi, M.2    Nadjar Araabi, B.3
  • 19
    • 33646398129 scopus 로고    scopus 로고
    • NNeural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method
    • Riedmiller M (2005) NNeural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method. In: Lecture notes in computer science, vol 3720.
    • (2005) Lecture notes in computer science , vol.3720
    • Riedmiller, M.1
  • 20
    • 34547696888 scopus 로고    scopus 로고
    • Handling missing values when applying classification models
    • Saar-Tsechansky M, Provost F (2007) Handling missing values when applying classification models. J Mach Learn Res 8(1625-1657): 9.
    • (2007) J Mach Learn Res , vol.8 , Issue.1625-1657 , pp. 9
    • Saar-Tsechansky, M.1    Provost, F.2
  • 21
    • 33745620071 scopus 로고
    • Learning to generate artificial fovea trajectories for target detection
    • Schmidhuber J, Huber R (1991) Learning to generate artificial fovea trajectories for target detection. Int J Neural Syst 2(1): 135-141.
    • (1991) Int J Neural Syst , vol.2 , Issue.1 , pp. 135-141
    • Schmidhuber, J.1    Huber, R.2
  • 24
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Williams R, Peng J (1990) An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Comput 2(4): 490-501.
    • (1990) Neural Comput , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.1    Peng, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.