메뉴 건너뛰기




Volumn 23, Issue 3, 2013, Pages

Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification

Author keywords

EEG; feature extraction; feature selection; Sleep stage classification; support vector machines

Indexed keywords

CLASSIFICATION ACCURACY; ELECTROENCEPHALOGRAM SIGNALS; EXTRACTING INFORMATION; FEATURE EXTRACTION METHODS; SEQUENTIAL LEARNING; SLEEP STAGE; SYMBOLIC REPRESENTATION; WAVELET TRANSFORMATIONS;

EID: 84877274155     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065713500123     Document Type: Article
Times cited : (59)

References (56)
  • 1
    • 0034331114 scopus 로고    scopus 로고
    • Interobserver agreement among sleep scorers from different centers in a large dataset
    • R. Norman, I. Pal, C. Stewart, J. Walsleben and D. Rappaport, Interobserver agreement among sleep scorers from different centers in a large dataset, Sleep 23 (2000) 901-908.
    • (2000) Sleep , vol.23 , pp. 901-908
    • Norman, R.1    Pal, I.2    Stewart, C.3    Walsleben, J.4    Rappaport, D.5
  • 2
    • 0003312348 scopus 로고
    • A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
    • Bethesda, Md: U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network
    • A. Rechtschaffen and A. Kales, A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, Ser. National Institutes of Health (U.S.). Bethesda, Md: U. S. National Institute of Neurological Diseases and Blindness, Neurological Information Network, Vol. 204 (1968
    • (1968) Ser. National Institutes of Health (U.S. , vol.204
    • Rechtschaffen, A.1    Kales, A.2
  • 3
    • 84877295681 scopus 로고    scopus 로고
    • The aasm manual for the scoring of sleep and associated events: Rules, terminology, and technical specifications. Westchester, ill.: American academy of sleep medicine (2007). 4. M. Bresler, differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry
    • C. Iber, S. Ancoli-Israel, A. Chesson and S. Quan, The AASM manual for the scoring of sleep and associated events: Rules, terminology, and technical specifications. Westchester, Ill.: American Academy of Sleep Medicine (2007). 4. M. Bresler, Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry, Physiol. Meas. 19(5) (2008) 571-584.
    • (2008) Physiol. Meas. , vol.19 , Issue.5 , pp. 571-584
    • Iber, C.1    Ancoli-Israel, S.2    Chesson, A.3    Quan, S.4
  • 4
    • 33847225926 scopus 로고    scopus 로고
    • Automatic sleep staging using support vector machines with posterior probability estimates proc
    • S. Gudmundsson, T. Runarsson and S. Sigurdsson, Automatic sleep staging using support vector machines with posterior probability estimates, Proc. IEEE CIMCA & IAWTIC (2005), pp. 366-373.
    • (2005) IEEE CIMCA & IAWTIC , pp. 366-373
    • Gudmundsson, S.1    Runarsson, T.2    Sigurdsson, S.3
  • 6
    • 78649560818 scopus 로고    scopus 로고
    • Analysis and automatic identification of sleep stages using higher order spectra
    • U. R. Acharya, E. C. P. Chua, K. C. Chua, L. C. Min and T. Tamura, Analysis and automatic identification of sleep stages using higher order spectra, Int. J. Neural Syst. 20(6) (2010) 509-521.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 509-521
    • Acharya, U.R.1    Chua, E.C.P.2    Chua, K.C.3    Min, L.C.4    Tamura, T.5
  • 7
    • 34249797621 scopus 로고    scopus 로고
    • Classification of human sleep stages based on EEG processing using hidden Markov models
    • DOI 10.1007/s10527-007-0006-5
    • L. G. Doroshenkov, V. A. Konyshev and S. V. Selishchev, Classification of human sleep stages based on EEG processing using hidden markov models, Biomed. Eng. 41 (2007) 25-28. (Pubitemid 46850206)
    • (2007) Biomedical Engineering , vol.41 , Issue.1 , pp. 25-28
    • Doroshenkov, L.G.1    Konyshev, V.A.2    Selishchev, S.V.3
  • 8
    • 79952279464 scopus 로고    scopus 로고
    • Investigation of an automatic sleep stage classification by means of multiscorer hypnogram
    • V. C. F. Helland, A. Gapelyuk, A. Suhrbier, M. Riedl, T. Pezel and J. Kurths, Investigation of an automatic sleep stage classification by means of multiscorer hypnogram, Methods Inf. Med. 49(5) (2010) 467-472.
    • (2010) Methods Inf. Med. , vol.49 , Issue.5 , pp. 467-472
    • Helland, V.C.F.1    Gapelyuk, A.2    Suhrbier, A.3    Riedl, M.4    Pezel, T.5    Kurths, J.6
  • 9
    • 77952334576 scopus 로고    scopus 로고
    • Classification of sleep stages using multi-wavelet time frequency entropy and lda methods
    • L. Fraiwan, K. Lweesy, N. Khasawneh, M. Fraiwan, H. Wenz and H. Dickhaus, Classification of sleep stages using multi-wavelet time frequency entropy and LDA, Methods Inf. Med. 49(3) (2010) 230-237.
    • (2010) Inf. Med. , vol.49 , Issue.3 , pp. 230-237
    • Fraiwan, L.1    Lweesy, K.2    Khasawneh, N.3    Fraiwan, M.4    Wenz, H.5    Dickhaus, H.6
  • 11
    • 77954758023 scopus 로고    scopus 로고
    • Genetic fuzzy classifier for sleep stage identification
    • H. G. Jo, J. Y. Park, C. K. Lee, S. K. An and S. K. Yoo, Genetic fuzzy classifier for sleep stage identification, Comput. Biol. Med. 40 (2010) 629-634.
    • (2010) Comput. Biol. Med. , vol.40 , pp. 629-634
    • Jo, H.G.1    Park, J.Y.2    Lee, C.K.3    An, S.K.4    Yoo, S.K.5
  • 12
    • 84863713559 scopus 로고    scopus 로고
    • Segmentation of sleep eeg signal by optimal thresholds, in proc
    • D. Migotina and A. Rosa, Segmentation of sleep EEG signal by optimal thresholds, in Proc. BioMed2012 (2012), pp. 114-121.
    • (2012) BioMed , vol.2012 , pp. 114-121
    • Migotina, D.1    Rosa, A.2
  • 14
    • 80053348045 scopus 로고    scopus 로고
    • Automatic detection of epileptic eeg signals using higher order cumulant features, int
    • U. R. Acharya U, S. V. Sree and J. S. Suri, Automatic detection of epileptic EEG signals using higher order cumulant features, Int. J. Neural Syst. 21(6) (2011) 403-414.
    • (2011) J. Neural Syst. , vol.21 , Issue.6 , pp. 403-414
    • Acharya, U.R.1    Sree, S.V.2    Suri, J.S.3
  • 15
    • 84859354964 scopus 로고    scopus 로고
    • A new parametric feature descriptor for the classification of epileptic and control eeg records in pediatric population
    • M. Cabrerizo, M. Ayala, M. Goryawala, P. Jayakar and M. Adjouadi, A new parametric feature descriptor for the classification of epileptic and control EEG records in pediatric population, Int. J. Neural Syst. 22(2) (2012) 1250001.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.2 , pp. 1250001
    • Cabrerizo, M.1    Ayala, M.2    Goryawala, M.3    Jayakar, P.4    Adjouadi, M.5
  • 16
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and background eeg signals using frequency domain parameters
    • O. Faust, U. R. Acharya, L. C. Min and B. H. C. Sputh, Automatic identification of epileptic and background EEG signals using frequency domain parameters, Int. J. Neural Syst. 20(2) (2010) 159-176.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.2 , pp. 159-176
    • Faust, O.1    Acharya, U.R.2    Min, L.C.3    Sputh, B.H.C.4
  • 17
    • 84859351360 scopus 로고    scopus 로고
    • Application of non-linear and wavelet based features for the automated identification of epileptic eeg signals
    • U. R. Acharya, S. V. Sree, A. P. C. Alvin and J. S. Suri, Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals, Int. J. Neural Syst. 22(2) (2012) 1250002-1250014.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.2 , pp. 1250002-1250014
    • Acharya, U.R.1    Sree, S.V.2    Alvin, A.P.C.3    Suri, J.S.4
  • 18
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • DOI 10.1016/S0165-0270(02)00340-0, PII S0165027002003400
    • H. Adeli, Z. Zhou and N. Dadmehr, Analysis of EEG records in an epileptic patient using wavelet transform, J. Neurosci. Methods 123(1) (2003) 69-87. (Pubitemid 36173654)
    • (2003) Journal of Neuroscience Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 19
    • 79953191488 scopus 로고    scopus 로고
    • Detection of nonlinear interactions of eeg alpha waves in the brain by a new coherence measure and its application to epilepsy and anti-epileptic drug therapy
    • D. Sherman, N. Zhang, M. Anderson, S. Garg, M. J. Hinich, N. V. Thakor and M. A. Mirski, Detection of nonlinear interactions of EEG alpha waves in the brain by a new coherence measure and its application to epilepsy and anti-epileptic drug therapy, Int. J. Neural Syst. 21(2) (2011) 115-126.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.2 , pp. 115-126
    • Sherman, D.1    Zhang, N.2    Anderson, M.3    Garg, S.4    Hinich, M.J.5    Thakor, N.V.6    Mirski, M.A.7
  • 20
    • 84870532507 scopus 로고    scopus 로고
    • Wavelet coherence model for diagnosis of alzheimer's disease
    • Z. Sankari, H. Adeli and A. Adeli, Wavelet coherence model for diagnosis of Alzheimer's disease, Clin. EEG Neurosci. 43(3) (2012) 268-278.
    • (2012) Clin. EEG Neurosci. , vol.43 , Issue.3 , pp. 268-278
    • Sankari, Z.1    Adeli, H.2    Adeli, A.3
  • 21
    • 78651088422 scopus 로고    scopus 로고
    • Intrahemispheric interhemispheric and distal eeg coherence in alzheimer's disease
    • Z. Sankari, H. Adeli and A. Adeli, Intrahemispheric, Interhemispheric and Distal EEG Coherence in Alzheimer's Disease, Clin. Neurophysiol. 122(5) (2011b) 897-906.
    • (2011) Clin. Neurophysiol. , vol.122 , Issue.5 , pp. 897-906
    • Sankari, Z.1    Adeli, H.2    Adeli, A.3
  • 22
    • 84867341025 scopus 로고    scopus 로고
    • Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder
    • M. Ahmadlou, H. Adeli and A. Adeli, Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder, J. Neurosci. Methods 211(2) (2012) 203-209.
    • (2012) J. Neurosci. Methods , vol.211 , Issue.2 , pp. 203-209
    • Ahmadlou, M.1    Adeli, H.2    Adeli, A.3
  • 23
    • 0014848261 scopus 로고
    • Eeg analysis based on time domain properties electroencephalography
    • B. Hjorth, EEG Analysis based on time domain properties, Electroencephalography Clin. Neurophysiol. 29 (1970) 306-310.
    • (1970) Clin. Neurophysiol. , vol.29 , pp. 306-310
    • Hjorth, B.1
  • 30
    • 84877309807 scopus 로고    scopus 로고
    • Learning with kernels support vector machines regularization optimization and beyond (mit press 2002) 32 w w cohen stacked sequential learning
    • B. Schoelkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (MIT Press, 2002). 32. W. W. Cohen, Stacked sequential learning, Proc. IJCAI (2005), pp. 671-676.
    • (2005) Proc IJCAI , pp. 671-676
    • Schoelkopf, B.1    Smola, A.2
  • 31
    • 79958788924 scopus 로고    scopus 로고
    • Multiscale stacked sequential learning
    • C. Gatta, E. Puertas and O. Pujol, Multiscale stacked sequential learning, Pattern Recognit. 44(10-11) (2011) 2414-2426.
    • (2011) Pattern Recognit. , vol.44 , Issue.10-11 , pp. 2414-2426
    • Gatta, C.1    Puertas, E.2    Pujol, O.3
  • 32
    • 84870669864 scopus 로고    scopus 로고
    • Automatic artifacts detection and classification in sleep eeg signals using descriptive statistics and histogram analysis: Comparison of two detectors
    • D. Migotina, A. Calapez and A. Rosa, Automatic artifacts detection and classification in sleep EEG signals using descriptive statistics and histogram analysis: Comparison of two detectors, in Proc. S-CET (2012), pp. 1-6.
    • (2012) Proc. S-CET , pp. 1-6
    • Migotina, D.1    Calapez, A.2    Rosa, A.3
  • 33
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
    • DOI 10.1109/TBME.2006.886855, 4
    • H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, A wavelet-chaos methodology for analysis of EEGs and EEG sub-bands to detect seizure and epilepsy, IEEE Trans. Biomed. Eng. 54(2) (2007) 205-211. (Pubitemid 46188163)
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.2 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 35
    • 0033645191 scopus 로고    scopus 로고
    • Use of ann and hjorth parameters in mental-task discrimination
    • M. Vourkas, G. Papadourakis and S. Micheloyannis, Use of ANN and Hjorth parameters in mental-task discrimination, in Proc. MEDSHIP (2000), pp. 327-332.
    • (2000) Proc MEDSHIP , pp. 327-332
    • Vourkas, M.1    Papadourakis, G.2    Micheloyannis, S.3
  • 36
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • A. Elisseeff and I. Guyon, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003) 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Elisseeff, A.1    Guyon, I.2
  • 37
    • 77958043391 scopus 로고    scopus 로고
    • Variable selection in nonlinear modeling based on rbf networks and evolutionary computation
    • P. Patrinos, A. Alexandridis, K. Ninos and H. Sarimveis, Variable selection in nonlinear modeling based on RBF networks and evolutionary computation, Int. J. Neural Syst. 20(5) (2010) 365-379.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.5 , pp. 365-379
    • Patrinos, P.1    Alexandridis, A.2    Ninos, K.3    Sarimveis, H.4
  • 38
    • 84861643574 scopus 로고    scopus 로고
    • Estimation of mutual information: A survey, in proc
    • J.Williams and Y. Li, Estimation of mutual information: A survey, in Proc. RSKT2009 (2009), pp. 389-396.
    • (2009) RSKT , vol.2009 , pp. 389-396
    • Williams, J.1    Li, Y.2
  • 39
    • 77951560201 scopus 로고    scopus 로고
    • Protein subcellular multilocalization prediction using a min-max modular support vector machine, int j
    • Y. Yang and B. L. Lu, Protein subcellular multilocalization prediction using a min-max modular support vector machine, Int J. Neural Syst. 20(1) (2010) 13-28.
    • (2010) Neural Syst. , vol.20 , Issue.1 , pp. 13-28
    • Yang, Y.1    Lu, B.L.2
  • 41
    • 82655173325 scopus 로고    scopus 로고
    • Rankingbased kernels in applied biomedical diagnostics using support vector machine
    • V. Jumutc, P. Zayakin and A. Borisov, Rankingbased Kernels in applied biomedical diagnostics using support vector machine, Int. J. Neural Syst. 21(6) (2011) 459-473.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.6 , pp. 459-473
    • Jumutc, V.1    Zayakin, P.2    Borisov, A.3
  • 42
    • 82655173325 scopus 로고    scopus 로고
    • Rankingbased kernels in applied biomedical diagnostics using support vector machine
    • V. Jumutc, P. Zayakin and A. Borisov, Rankingbased Kernels in applied biomedical diagnostics using support vector machine, Int. J. Neural Syst. 21(6) (2011) 459-473.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.6 , pp. 459-473
    • Jumutc, V.1    Zayakin, P.2    Borisov, A.3
  • 43
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • DOI 10.1162/089976603321891855
    • S. S. Keerthi and C. J. Lin, Asymptotic behavior of support vector machines with Gaussian Kernel, Neural Comput. 15(7) (2003) 1667-1689. (Pubitemid 37035565)
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 46
    • 0002432308 scopus 로고    scopus 로고
    • Kohonen's self-organizing maps for exploratory data analysis
    • Kluwer Academic, Dordrecht, Paris
    • S. Ultsch, Kohonen's self-organizing maps for exploratory data analysis, in Proc. INNC'90, Kluwer Academic, Dordrecht, Paris (2000), pp. 305-308.
    • (2000) Proc. INNC'90 , pp. 305-308
    • Ultsch, S.1
  • 48
    • 61849108487 scopus 로고    scopus 로고
    • Comparison between five classifiers for automatic scoring of human sleep recordings
    • G. Becq, S. Charbonnier, F. Chapotot, A. Buguet and L. Bourdon, Comparison between five classifiers for automatic scoring of human sleep recordings, Stud. Comput. Intell. 4 (2005) 113-127.
    • (2005) Stud Comput Intell , vol.4 , pp. 113-127
    • Becq, G.1    Charbonnier, S.2    Chapotot, F.3    Buguet, A.4    Bourdon, L.5
  • 49
    • 79960037752 scopus 로고    scopus 로고
    • Application of recurrence quantification analysis for the automated identification of epileptic eeg signals
    • U. R. Acharya, S. V. Sree, S. Chattopadhyay, W. Yu and P. C. Ang, Application of recurrence quantification analysis for the automated identification of epileptic EEG signals, Int. J. Neur. Syst. 21 (2010) 199-211.
    • (2010) Int. J. Neur. Syst. , vol.21 , pp. 199-211
    • Acharya, U.R.1    Sree, S.V.2    Chattopadhyay, S.3    Yu, W.4    Ang, P.C.5
  • 50
  • 53
    • 84862065733 scopus 로고    scopus 로고
    • Artificial neural network-based approach to eeg signal simulation
    • N.M. Tomasevic, A.M. Neskovic and N. J. Neskovic, Artificial neural network-based approach to EEG signal simulation, Int. J. Neural Syst. 22(3) (2012) 1250008-1250016.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.3 , pp. 1250008-1250016
    • Tomasevic, N.M.1    Neskovic, A.M.2    Neskovic, N.J.3
  • 54
    • 34547597104 scopus 로고    scopus 로고
    • Improved spiking neural networks for EEG classification and epilepsy and seizure detection
    • S. Ghosh-Dastidar and H. Adeli, Improved spiking neural networks for EEG classification and epilepsy and seizure detection, Integr. Comput. Aided Eng. 14(3) (2007) 187-212. (Pubitemid 47191475)
    • (2007) Integrated Computer-Aided Engineering , vol.14 , Issue.3 , pp. 187-212
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 55
    • 50449091073 scopus 로고    scopus 로고
    • Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress
    • J. Baumeister, T. Barthel, K. R. Geiss and M. Weiss, Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress, Nutritional Neuroscience 11(3) (2008) 103-110.
    • (2008) Nutritional Neuroscience , vol.11 , Issue.3 , pp. 103-110
    • Baumeister, J.1    Barthel, T.2    Geiss, K.R.3    Weiss, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.