메뉴 건너뛰기




Volumn , Issue , 2011, Pages 253-258

Symbolic representation of the EEG for sleep stage classification

Author keywords

EEG signal processing; Sleep Stage Classification; Support Vector Machines; Unbalanced Data; Variable Selection

Indexed keywords

EEG SIGNAL PROCESSING; SLEEP STAGE; SUPPORT VECTOR; UNBALANCED DATA; VARIABLE SELECTION;

EID: 84857519282     PISSN: 21647143     EISSN: 21647151     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2011.6121664     Document Type: Conference Paper
Times cited : (26)

References (20)
  • 1
    • 20844455925 scopus 로고    scopus 로고
    • An E-Health Solution for Automatic Sleep Classification according to Rechtschaffen and Kales: Validation Study of the Somnolyzer 24 x 7 Utilizing the Siesta Database
    • P. Anderer et al. "An E-Health Solution for Automatic Sleep Classification according to Rechtschaffen and Kales: Validation Study of the Somnolyzer 24 x 7 Utilizing the Siesta Database,"Neurophycobiology, vol 51, no. 3, 2005.
    • (2005) Neurophycobiology , vol.51 , Issue.3
    • Anderer, P.1
  • 2
    • 0034331114 scopus 로고    scopus 로고
    • Interobserver Agreement among Sleep Scorers from Different Centers in a Large Dataset
    • R. Norman, I. Pal, C. Stewart, J. Walsleben, D. Rappaport, "Interobserver Agreement Among Sleep Scorers From Different Centers in a Large Dataset," Sleep, vol.23, pp. 901-908, 2000.
    • (2000) Sleep , vol.23 , pp. 901-908
    • Norman, R.1    Pal, I.2    Stewart, C.3    Walsleben, J.4    Rappaport, D.5
  • 11
    • 0000373195 scopus 로고
    • Methods of Analysis of Brain Electrical and Magnetic Signals
    • edited by A. Gevins and A. Rémond Elseiver, Amsterdam
    • Handbook of Electroencephalography and Slinical Neurophysiology, Vol. I: Methods of Analysis of Brain Electrical and Magnetic Signals, edited by A. Gevins and A. Rémond (Elseiver, Amsterdam, 1987).
    • (1987) Handbook of Electroencephalography and Slinical Neurophysiology , vol.1
  • 12
  • 14
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min- redundancy," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.27, No. 8, pp.1226-1238 2005 (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 15
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • C.-W. Hsu and C-J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Transactions on Neural Networks, vol. 13, no.2, pp.4I5-425,2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2
    • Hsu, C.-W.1    Lin, C.-J.2
  • 16
    • 0003789653 scopus 로고    scopus 로고
    • Support Vector Machines: Training and applications
    • Massachuseffs Institute of Technology
    • E. Osuna, R. Freund, F. Girosi, Support Vector Machines: Training and applications. Al Memo 1 602, Massachuseffs Institute of Technology, 1997.
    • (1997) Al Memo 1 602
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 20
    • 0002432308 scopus 로고    scopus 로고
    • Kohonen's self-organizing maps for exploratory data analysis
    • S. Ultsch, "Kohonen's self-organizing maps for exploratory data analysis," in Proc. of the INNC'90, 2000, pp. 305-308.
    • (2000) Proc. of the INNC'90 , pp. 305-308
    • Ultsch, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.