메뉴 건너뛰기




Volumn 138, Issue 11, 2012, Pages 999-1010

Machine learning approaches for error correction of hydraulic simulation models for canal flow schemes

Author keywords

Error modeling; Hydraulic model; Irrigation; Learning machines; Multilayer perceptron; Neural networks; Relevance vector machines; SCADA; Water management

Indexed keywords

ERROR MODELING; LEARNING MACHINES; MULTI LAYER PERCEPTRON; RELEVANCE VECTOR MACHINE; SCADA;

EID: 84876702998     PISSN: 07339437     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)IR.1943-4774.0000489     Document Type: Article
Times cited : (16)

References (46)
  • 1
    • 0034140341 scopus 로고    scopus 로고
    • Evaluating the generalization ability of support vector machines through the bootstrap
    • Anguita, D., Boni, A., and Ridella, S. (2000). "Evaluating the generalization ability of support vector machines through the bootstrap." Neural Process. Lett., 11(1), 51-58.
    • (2000) Neural Process. Lett. , vol.11 , Issue.1 , pp. 51-58
    • Anguita, D.1    Boni, A.2    Ridella, S.3
  • 3
    • 31044438334 scopus 로고    scopus 로고
    • Multitime scale stream flow predictions: The support vector machines approach
    • Asefa, T., Kemblowski, M., McKee, M., and Khalil, A. F. (2006). "Multitime scale stream flow predictions: The support vector machines approach." J. Hydrol. (Amsterdam), 318(1-4), 7-16.
    • (2006) J. Hydrol. (Amsterdam) , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.F.4
  • 5
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures (with comments and a rejoinder by the author)
    • Breiman, L. (2001). "Statistical modeling: The two cultures (with comments and a rejoinder by the author)." Statist. Sci., 16(3), 199-231.
    • (2001) Statist. Sci. , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 6
    • 0001569029 scopus 로고
    • The effect of measurement error
    • Chesher, A. (1991). "The effect of measurement error." Biometrika, 78(3), 451-462.
    • (1991) Biometrika , vol.78 , Issue.3 , pp. 451-462
    • Chesher, A.1
  • 8
    • 79959415599 scopus 로고    scopus 로고
    • Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines
    • IEEE, Barcelona, Spain
    • Cortez, P. (2010). "Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines." 2010 Int. Joint Conf. on Neural Networks (IJCNN), IEEE, Barcelona, Spain, 1-8.
    • (2010) 2010 Int. Joint Conf. on Neural Networks (IJCNN) , pp. 1-8
    • Cortez, P.1
  • 9
    • 58149178536 scopus 로고    scopus 로고
    • Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions
    • Demissie, Y. K., Valocchi, A. J., Minsker, B. S., and Bailey, B. A. (2009). "Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions." J. Hydrol. (Amsterdam), 364(3/4), 257-271.
    • (2009) J. Hydrol. (Amsterdam) , vol.364 , Issue.3-4 , pp. 257-271
    • Demissie, Y.K.1    Valocchi, A.J.2    Minsker, B.S.3    Bailey, B.A.4
  • 11
    • 36049032414 scopus 로고    scopus 로고
    • Statistical downscaling of GCM simulations to streamflow using relevance vector machine
    • Ghosh, S., and Mujumdar, P. (2008). "Statistical downscaling of GCM simulations to streamflow using relevance vector machine." Adv. Water Resour., 31(1), 132-146.
    • (2008) Adv. Water Resour. , vol.31 , Issue.1 , pp. 132-146
    • Ghosh, S.1    Mujumdar, P.2
  • 12
    • 49449115848 scopus 로고    scopus 로고
    • Reconciling theory with observations: Elements of a diagnostic approach to model evaluation
    • Gupta, H. V., Wagener, T., and Liu, Y. (2008). "Reconciling theory with observations: Elements of a diagnostic approach to model evaluation." Hydrol. Process., 22(18), 3802-3813.
    • (2008) Hydrol. Process. , vol.22 , Issue.18 , pp. 3802-3813
    • Gupta, H.V.1    Wagener, T.2    Liu, Y.3
  • 13
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., and Elisseeff, A. (2003). "An introduction to variable and feature selection." J. Mach. Learn. Res., 3, 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 29944444287 scopus 로고    scopus 로고
    • Sparse Bayesian learning machine for real-time management of reservoir releases
    • Khalil, A. F., McKee, M., Kemblowski, M., and Asefa, T. (2005). "Sparse Bayesian learning machine for real-time management of reservoir releases." Water Resour. Res., 41(11), W11401.
    • (2005) Water Resour. Res. , vol.41 , Issue.11
    • Khalil, A.F.1    McKee, M.2    Kemblowski, M.3    Asefa, T.4
  • 16
    • 28444480680 scopus 로고    scopus 로고
    • Multiobjective analysis of chaotic dynamic systems with sparse learning machines
    • Khalil, A. F., McKee, M., Kemblowski, M., Asefa, T., and Bastidas, L. A. (2006). "Multiobjective analysis of chaotic dynamic systems with sparse learning machines." Adv. Water Resour., 29(1), 72-88.
    • (2006) Adv. Water Resour. , vol.29 , Issue.1 , pp. 72-88
    • Khalil, A.F.1    McKee, M.2    Kemblowski, M.3    Asefa, T.4    Bastidas, L.A.5
  • 17
    • 66449088932 scopus 로고    scopus 로고
    • Forecasting weekly evapotranspiration with ARIMA and artificial neural network models
    • Landeras, G., Ortiz-Barredo, A., and López, J. J. (2009). "Forecasting weekly evapotranspiration with ARIMA and artificial neural network models." J. Irrig. Drain. Eng., 135(3), 323-334.
    • (2009) J. Irrig. Drain. Eng. , vol.135 , Issue.3 , pp. 323-334
    • Landeras, G.1    Ortiz-Barredo, A.2    López, J.J.3
  • 18
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. J. C. (1992). "A practical Bayesian framework for backpropagation networks." Neural Comput., 4(3), 448-472.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 19
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R., and Dandy, G. C. (2000). "Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications." Environ. Model. Software, 15(1), 101-124.
    • (2000) Environ. Model. Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 20
    • 77950987358 scopus 로고    scopus 로고
    • Integrated emitter local loss prediction using artificial neural networks
    • Martí, P., Provenzano, G., Royuela, A., and Palau-Salvador, G. (2010). "Integrated emitter local loss prediction using artificial neural networks." J. Irrig. Drain. Eng., 136(1), 11-22.
    • (2010) J. Irrig. Drain. Eng. , vol.136 , Issue.1 , pp. 11-22
    • Martí, P.1    Provenzano, G.2    Royuela, A.3    Palau-Salvador, G.4
  • 23
    • 20644445412 scopus 로고    scopus 로고
    • Error analysis for the evaluation of model performance: Rainfall-runoff event time series data
    • Pebesma, E. J., Switzer, P., and Loague, K. (2005). "Error analysis for the evaluation of model performance: Rainfall-runoff event time series data." Hydrol. Process., 19(8), 1529-1548.
    • (2005) Hydrol. Process. , vol.19 , Issue.8 , pp. 1529-1548
    • Pebesma, E.J.1    Switzer, P.2    Loague, K.3
  • 24
    • 44549086803 scopus 로고    scopus 로고
    • Uncertainty analysis of a neural network used for fatigue lifetime prediction
    • Pierce, S. G., Worden, K., and Bezazi, A. (2008). "Uncertainty analysis of a neural network used for fatigue lifetime prediction." Mech. Syst. Signal Process., 22(6), 1395-1411.
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.6 , pp. 1395-1411
    • Pierce, S.G.1    Worden, K.2    Bezazi, A.3
  • 25
    • 59049088362 scopus 로고    scopus 로고
    • Improved irrigation water demand forecasting using a soft-computing hybrid model
    • Pulido-Calvo, I., and Gutiérrez-Estrada, J. C. (2009). "Improved irrigation water demand forecasting using a soft-computing hybrid model." Biosyst. Eng., 102(2), 202-218.
    • (2009) Biosyst. Eng. , vol.102 , Issue.2 , pp. 202-218
    • Pulido-Calvo, I.1    Gutiérrez-Estrada, J.C.2
  • 26
    • 34250206968 scopus 로고    scopus 로고
    • Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems
    • Pulido-Calvo, I., Montesinos, P., Roldán, J., and Ruiz-Navarro, F. (2007). "Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems." Biosyst. Eng., 97(2), 283-293.
    • (2007) Biosyst. Eng. , vol.97 , Issue.2 , pp. 283-293
    • Pulido-Calvo, I.1    Montesinos, P.2    Roldán, J.3    Ruiz-Navarro, F.4
  • 28
    • 0025522703 scopus 로고
    • Effect of sensor error on interpretation of longterm water-level data
    • Rosenberry, D. O. (1990). "Effect of sensor error on interpretation of longterm water-level data." Ground Water, 28(6), 927-936.
    • (1990) Ground Water , vol.28 , Issue.6 , pp. 927-936
    • Rosenberry, D.O.1
  • 29
    • 1442314050 scopus 로고    scopus 로고
    • Reliability of model predictions outside calibration conditions
    • Seibert, J. (2003). "Reliability of model predictions outside calibration conditions." Nord. Hydrol., 34(5), 477-492.
    • (2003) Nord. Hydrol. , vol.34 , Issue.5 , pp. 477-492
    • Seibert, J.1
  • 30
    • 84876704101 scopus 로고    scopus 로고
    • Sevier RiverWater Users Association (SRWUA), Rivers and Canals, (Dec. 15, 2009)
    • Sevier RiverWater Users Association (SRWUA). (2011). "Canal A recording data." Rivers and Canals, (Dec. 15, 2009).
    • (2011) Canal A recording data
  • 33
    • 78751567890 scopus 로고    scopus 로고
    • Multivariate Bayesian regression approach to forecast releases from a system of multiple reservoirs
    • Ticlavilca, A. M., and McKee, M. (2011). "Multivariate Bayesian regression approach to forecast releases from a system of multiple reservoirs." Water Resour. Manage., 25, 523-543.
    • (2011) Water Resour. Manage. , vol.25 , pp. 523-543
    • Ticlavilca, A.M.1    McKee, M.2
  • 34
    • 84890437927 scopus 로고    scopus 로고
    • Real-time forecasting of short-term irrigation canal demands using a robust multivariate Bayesian learning model
    • Ticlavilca, A. M., McKee, M., and Walker, W. R. (2011). "Real-time forecasting of short-term irrigation canal demands using a robust multivariate Bayesian learning model." Irrig. Sci., August.
    • (2011) Irrig. Sci., August.
    • Ticlavilca, A.M.1    McKee, M.2    Walker, W.R.3
  • 35
    • 56449120265 scopus 로고    scopus 로고
    • Sequential input selection algorithm for long-term prediction of time series
    • Tikka, J., and Hollmen, J. (2008). "Sequential input selection algorithm for long-term prediction of time series." Neurocomputing, 71(13-15), 2604-2615.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2604-2615
    • Tikka, J.1    Hollmen, J.2
  • 37
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001). "Sparse Bayesian learning and the relevance vector machine." J. Mach. Learn. Res., 1(3), 211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 39
    • 14344264768 scopus 로고    scopus 로고
    • Fast marginal likelihood maximization for sparse Bayesian models
    • (online publication), Key West, FL
    • Tipping, M. E., and Faul, A. (2003). "Fast marginal likelihood maximization for sparse Bayesian models." Proc., 9th Int. Workshop on Artificial Intelligence and Statistics (online publication), Key West, FL, 1, 1-13.
    • (2003) Proc., 9th Int. Workshop on Artificial Intelligence and Statistics , vol.1 , pp. 1-13
    • Tipping, M.E.1    Faul, A.2
  • 40
    • 78651412527 scopus 로고    scopus 로고
    • Forecasting daily potential evapotranspiration using machine learning and limited climatic data
    • Torres, A. F., Walker, W. R., and McKee, M. (2011). "Forecasting daily potential evapotranspiration using machine learning and limited climatic data." Agr. Water Manage., 98(4), 553-562.
    • (2011) Agr. Water Manage. , vol.98 , Issue.4 , pp. 553-562
    • Torres, A.F.1    Walker, W.R.2    McKee, M.3
  • 43
    • 77956796657 scopus 로고    scopus 로고
    • Low cost adaptable canal automation for small canals
    • Walker, W. R., and Stringam, B. S. (1999). "Low cost adaptable canal automation for small canals." Irrig. Drain., 48(3), 39-46.
    • (1999) Irrig. Drain. , vol.48 , Issue.3 , pp. 39-46
    • Walker, W.R.1    Stringam, B.S.2
  • 44
    • 84876734505 scopus 로고    scopus 로고
    • Canal automation for water conservation and improved flexibility
    • American Society of Agricultural Engineers, Phoenix, AZ
    • Walker, W. R., and Stringam, B. S. (2000). "Canal automation for water conservation and improved flexibility." Proc., 4th Decennial National Irrigation Symposium, American Society of Agricultural Engineers, Phoenix, AZ.
    • (2000) Proc., 4th Decennial National Irrigation Symposium
    • Walker, W.R.1    Stringam, B.S.2
  • 45
    • 80955164481 scopus 로고    scopus 로고
    • Use of high-resolution multispectral imagery acquired with an autonomous unmanned aerial vehicle to quantify the spread of an invasive wetlands species
    • Vancouver, Canada
    • Zaman, B., Jensen, A. M., and McKee, M. (2011). "Use of high-resolution multispectral imagery acquired with an autonomous unmanned aerial vehicle to quantify the spread of an invasive wetlands species." Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International eds., Vancouver, Canada, 1, 803-806.
    • (2011) Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International eds. , vol.1 , pp. 803-806
    • Zaman, B.1    Jensen, A.M.2    McKee, M.3
  • 46
    • 33847285139 scopus 로고    scopus 로고
    • Evolutionary computationbased approach for model error correction and calibration
    • Zechman, E. M., and Ranjithan, S. (2007). "Evolutionary computationbased approach for model error correction and calibration." Adv. Water Resour., 30(5), 1360-1370
    • (2007) Adv. Water Resour. , vol.30 , Issue.5 , pp. 1360-1370
    • Zechman, E.M.1    Ranjithan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.