메뉴 건너뛰기




Volumn 27, Issue 7, 2013, Pages 2541-2554

Principle Component Analysis in Conjuction with Data Driven Methods for Sediment Load Prediction

Author keywords

Artificial neural network; Genetic algorithm; Principle component analysis; Sediment load; Transferability

Indexed keywords

FORECASTING; GENETIC ALGORITHMS; LABORATORIES; NONLINEAR EQUATIONS; SEDIMENTS;

EID: 84876429805     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-013-0302-7     Document Type: Article
Times cited : (31)

References (30)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural network in hydrology. I: preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural network in hydrology. I: preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 34248631948 scopus 로고    scopus 로고
    • Machine learning approach to modeling sediment transport
    • Bhattacharya B, Price RK, Solomatine DP (2007) Machine learning approach to modeling sediment transport. J Hydraul Eng 133(4): 440-450.
    • (2007) J Hydraul Eng , vol.133 , Issue.4 , pp. 440-450
    • Bhattacharya, B.1    Price, R.K.2    Solomatine, D.P.3
  • 3
    • 85040292972 scopus 로고
    • W. M Keck laboratory of Hydraulics and Water Resources, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, Calif
    • Brownlie WR (1981) "Compilation of alluvial channel data: laboratory and field." W. M Keck laboratory of Hydraulics and Water Resources, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, Calif.
    • (1981) Compilation of alluvial channel data: laboratory and field
    • Brownlie, W.R.1
  • 4
    • 33845945922 scopus 로고
    • Coefficient alpha and the internal structure of tests
    • Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16: 297-334.
    • (1951) Psychometrika , vol.16 , pp. 297-334
    • Cronbach, L.J.1
  • 6
    • 70349781844 scopus 로고    scopus 로고
    • From flume to rivers: can sediment transport in natural alluvial channels be predicted from observations at the laboratory scale?
    • Dogan E, Tripathi S, Lyn DA, Govindaraju RS (2009) From flume to rivers: can sediment transport in natural alluvial channels be predicted from observations at the laboratory scale? Water Resour Res 45(8): 1-16.
    • (2009) Water Resour Res , vol.45 , Issue.8 , pp. 1-16
    • Dogan, E.1    Tripathi, S.2    Lyn, D.A.3    Govindaraju, R.S.4
  • 8
    • 24944552538 scopus 로고    scopus 로고
    • Remediation system design with multiple uncertain parameters using fuzzy sets and genetic algorithm
    • Guan J, Aral MM (2005) Remediation system design with multiple uncertain parameters using fuzzy sets and genetic algorithm. J Hydrol Eng 10(5): 194-386.
    • (2005) J Hydrol Eng , vol.10 , Issue.5 , pp. 194-386
    • Guan, J.1    Aral, M.M.2
  • 10
    • 11844296189 scopus 로고    scopus 로고
    • Groundwater remediation design under uncertainty using genetic algorithms
    • Hilton ABC, Culver TB (2005) Groundwater remediation design under uncertainty using genetic algorithms. J Water Resour Plan Manag 131(1): 25-34.
    • (2005) J Water Resour Plan Manag , vol.131 , Issue.1 , pp. 25-34
    • Hilton, A.B.C.1    Culver, T.B.2
  • 11
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • Jain KS (2001) Development of integrated sediment rating curves using ANNs. J Hydraul Eng 127(1): 30-37.
    • (2001) J Hydraul Eng , vol.127 , Issue.1 , pp. 30-37
    • Jain, K.S.1
  • 12
    • 0037409648 scopus 로고    scopus 로고
    • Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir
    • Loska K, Wiechula D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. J Chemosphere 51(8): 723-733.
    • (2003) J Chemosphere , vol.51 , Issue.8 , pp. 723-733
    • Loska, K.1    Wiechula, D.2
  • 13
    • 77951204309 scopus 로고    scopus 로고
    • Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic
    • Noori R, Khakpour A, Omidvar B, Farokhnia A (2010) Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. J Eswa 37(8): 5856-5862.
    • (2010) J Eswa , vol.37 , Issue.8 , pp. 5856-5862
    • Noori, R.1    Khakpour, A.2    Omidvar, B.3    Farokhnia, A.4
  • 14
    • 21744458106 scopus 로고    scopus 로고
    • Evaluation of river water quality monitoring stations by principal component analysis
    • Ouyang Y (2005) Evaluation of river water quality monitoring stations by principal component analysis. J Waters 39(12): 2621-2635.
    • (2005) J Waters , vol.39 , Issue.12 , pp. 2621-2635
    • Ouyang, Y.1
  • 17
    • 0035312520 scopus 로고    scopus 로고
    • Genetic algorithm for the classification and prediction of precipitation occurrence
    • Sen Z, Oztopal A (2001) Genetic algorithm for the classification and prediction of precipitation occurrence. Hydrol Sci J 46(2): 255-268.
    • (2001) Hydrol Sci J , vol.46 , Issue.2 , pp. 255-268
    • Sen, Z.1    Oztopal, A.2
  • 18
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrol Sci J 47(6): 879-892.
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 19
    • 59349086645 scopus 로고    scopus 로고
    • GA-optimized model predicts dispersion coefficient in natural channels
    • Tayfur G (2009) GA-optimized model predicts dispersion coefficient in natural channels. J Hydrol Res 40(1): 65-78.
    • (2009) J Hydrol Res , vol.40 , Issue.1 , pp. 65-78
    • Tayfur, G.1
  • 21
    • 33644924333 scopus 로고    scopus 로고
    • Artificial neural networks for estimating daily total suspended sediment in natural stream
    • Tayfur G, Guldal V (2006) Artificial neural networks for estimating daily total suspended sediment in natural stream. J Nord Hydrol 37: 69-79.
    • (2006) J Nord Hydrol , vol.37 , pp. 69-79
    • Tayfur, G.1    Guldal, V.2
  • 22
    • 40649084759 scopus 로고    scopus 로고
    • Predicting hourly-based flow discharge hydrographs from level data using genetic algorithms
    • Tayfur G, Moramarco T (2008) Predicting hourly-based flow discharge hydrographs from level data using genetic algorithms. J Hydrol 352(1-2): 77-93.
    • (2008) J Hydrol , vol.352 , Issue.1-2 , pp. 77-93
    • Tayfur, G.1    Moramarco, T.2
  • 23
    • 34447334519 scopus 로고    scopus 로고
    • Predicting and forecasting flow discharge at sites receiving significant lateral inflow
    • Tayfur G, Moramarco T, Singh VP (2007) Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrol Process 21(14): 1848-1859.
    • (2007) Hydrol Process , vol.21 , Issue.14 , pp. 1848-1859
    • Tayfur, G.1    Moramarco, T.2    Singh, V.P.3
  • 24
    • 65449125323 scopus 로고    scopus 로고
    • Genetic algorithm-based discharge estimation at sites receiving lateral inflows
    • Tayfur G, Barbetta S, Moramarco T (2009) Genetic algorithm-based discharge estimation at sites receiving lateral inflows. J Hydrol Eng 14(5): 463-474.
    • (2009) J Hydrol Eng , vol.14 , Issue.5 , pp. 463-474
    • Tayfur, G.1    Barbetta, S.2    Moramarco, T.3
  • 25
    • 0021561247 scopus 로고
    • Sediment transport. Part I: bed load transport
    • van Rijn LC (1984) Sediment transport. Part I: bed load transport. J Hydraul Eng 110(10): 1431-1456.
    • (1984) J Hydraul Eng , vol.110 , Issue.10 , pp. 1431-1456
    • van Rijn, L.C.1
  • 26
    • 0034161399 scopus 로고    scopus 로고
    • The use of principal component analysis for interpreting ground water hydrographs
    • Winter TC, Mallory SE, Allen TR, Rosenberry DO (2000) The use of principal component analysis for interpreting ground water hydrographs. J Ground Water 38(2): 234-246.
    • (2000) J Ground Water , vol.38 , Issue.2 , pp. 234-246
    • Winter, T.C.1    Mallory, S.E.2    Allen, T.R.3    Rosenberry, D.O.4
  • 29
    • 78449303915 scopus 로고    scopus 로고
    • Prediction of sediment transportation in deep bay (Hong Kong) using genetic algorithm
    • Zhang FX, Wai OWH, Jiang YW (2010) Prediction of sediment transportation in deep bay (Hong Kong) using genetic algorithm. J Hydrodyn 22(5): 599-604.
    • (2010) J Hydrodyn , vol.22 , Issue.5 , pp. 599-604
    • Zhang, F.X.1    Wai, O.W.H.2    Jiang, Y.W.3
  • 30
    • 33846274953 scopus 로고    scopus 로고
    • Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze
    • Zhu YM, Lu XX, Zhou Y (2006) Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze. J Geomorphol 84(1-2): 111-125.
    • (2006) J Geomorphol , vol.84 , Issue.1-2 , pp. 111-125
    • Zhu, Y.M.1    Lu, X.X.2    Zhou, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.