메뉴 건너뛰기




Volumn 32, Issue 5, 2013, Pages 1187-1195

Using conditional inference trees and random forests to predict the bioaccumulation potential of organic chemicals

Author keywords

Bioaccumulation; Bioconcentration factor; Conditional inference trees; Random forests; REACH

Indexed keywords

BIO-CONCENTRATION FACTORS; BIOACCUMULATION POTENTIAL; CONDITIONAL INFERENCE; DISTRIBUTION COEFFICIENT; PHYSICO-CHEMICAL DESCRIPTORS; RANDOM FORESTS; REACH; SUPERVISED MACHINE LEARNING;

EID: 84876417882     PISSN: 07307268     EISSN: 15528618     Source Type: Journal    
DOI: 10.1002/etc.2150     Document Type: Article
Times cited : (25)

References (38)
  • 1
    • 51849127476 scopus 로고    scopus 로고
    • Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
    • European Commission establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) 793/93 and Commission Regulation (EC) 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC
    • European Commission. 2006. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) 793/93 and Commission Regulation (EC) 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Official J Euro Union 49:1-849.
    • (2006) Official J Euro Union , vol.49 , pp. 1-849
  • 3
    • 84876406454 scopus 로고    scopus 로고
    • European Chemicals Agency. Guidance on information requirements and chemical safety assessment-Chapter R.7c: Endpoint specific guidance. Helsinki, Finland
    • European Chemicals Agency. 2008. Guidance on information requirements and chemical safety assessment-Chapter R.7c: Endpoint specific guidance. Helsinki, Finland.
    • (2008)
  • 4
    • 79957819399 scopus 로고    scopus 로고
    • Screening for low aquatic bioaccumulation (2): Physico-chemical constraints
    • Nendza M, Herbst T. 2011. Screening for low aquatic bioaccumulation (2): Physico-chemical constraints. SAR QSAR Environ Res 22:351-364.
    • (2011) SAR QSAR Environ Res , vol.22 , pp. 351-364
    • Nendza, M.1    Herbst, T.2
  • 5
    • 84876410733 scopus 로고    scopus 로고
    • U.S. Environmental Protection Agency. Estimation Programs Interface Suite™ for Microsoft® Windows, Ver 4.10. Washington, DC
    • U.S. Environmental Protection Agency. 2012. Estimation Programs Interface Suite™ for Microsoft® Windows, Ver 4.10. Washington, DC.
    • (2012)
  • 6
    • 84876417395 scopus 로고    scopus 로고
    • U.S. Environmental Protection Agency. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST). Washington, DC
    • U.S. Environmental Protection Agency. 2011. Estimation of toxicity using the Toxicity Estimation Software Tool (TEST). Washington, DC.
    • (2011)
  • 7
    • 55249098367 scopus 로고    scopus 로고
    • A new hybrid system of QSAR models for predicting bioconcentration factors (BCF)
    • Zhao C, Boriani E, Chana A, Roncaglioni A, Benfenati E. 2008. A new hybrid system of QSAR models for predicting bioconcentration factors (BCF). Chemosphere 73:1701-1707.
    • (2008) Chemosphere , vol.73 , pp. 1701-1707
    • Zhao, C.1    Boriani, E.2    Chana, A.3    Roncaglioni, A.4    Benfenati, E.5
  • 9
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: A conditional inference framework
    • Hothorn T, Hornik K, Zeileis A. 2006. Unbiased recursive partitioning: A conditional inference framework. J Comput Graph Stat 15:651-674.
    • (2006) J Comput Graph Stat , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001. Random forests. Mach Learn 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 14
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    • (2011) R: A Language and Environment for Statistical Computing
  • 15
    • 69249205658 scopus 로고    scopus 로고
    • Methods for estimating the bioconcentration factor of ionizable organic chemicals
    • Fu W, Franco A, Trapp S. 2009. Methods for estimating the bioconcentration factor of ionizable organic chemicals. Environ Toxicol Chem 28:1372-1379.
    • (2009) Environ Toxicol Chem , vol.28 , pp. 1372-1379
    • Fu, W.1    Franco, A.2    Trapp, S.3
  • 16
    • 84876420238 scopus 로고    scopus 로고
    • Environment Canada. Ecological Categorization Results from the Canadian Domestic Substance List. Organisation for Economic Co-operation and Development. Ottawa, ON, Canada
    • Environment Canada. 2006. Ecological Categorization Results from the Canadian Domestic Substance List. Organisation for Economic Co-operation and Development. Ottawa, ON, Canada.
    • (2006)
  • 17
    • 84876419714 scopus 로고    scopus 로고
    • U.S. Environmental Protection Agency. EPI Suite Data. Washington, DC
    • U.S. Environmental Protection Agency. 2011. EPI Suite Data. Washington, DC.
    • (2011)
  • 18
    • 84876420539 scopus 로고    scopus 로고
    • U.S. Environmental Protection Agency. Aquatic Toxicity Information Retrieval Database (AQUIRE). Duluth, MN
    • U.S. Environmental Protection Agency. 2011. Aquatic Toxicity Information Retrieval Database (AQUIRE). Duluth, MN.
    • (2011)
  • 19
    • 84876407722 scopus 로고    scopus 로고
    • Cefic Long-range Research Initiative. BCF Gold Standard Database. Brussels, Belgium
    • Cefic Long-range Research Initiative. 2006. BCF Gold Standard Database. Brussels, Belgium.
    • (2006)
  • 20
    • 84876412005 scopus 로고    scopus 로고
    • National Institute of Technology and Evaluation. Chemical Risk Information Platform (CHRIP). Tokyo, Japan
    • National Institute of Technology and Evaluation. 2011. Chemical Risk Information Platform (CHRIP). Tokyo, Japan.
    • (2011)
  • 22
    • 42449132540 scopus 로고    scopus 로고
    • Estimating metabolic biotransformation rates in fish from laboratory data
    • Arnot JA, Mackay D, Bonnell M. 2008. Estimating metabolic biotransformation rates in fish from laboratory data. Environ Toxicol Chem 27:341-351.
    • (2008) Environ Toxicol Chem , vol.27 , pp. 341-351
    • Arnot, J.A.1    Mackay, D.2    Bonnell, M.3
  • 24
    • 84876420969 scopus 로고    scopus 로고
    • US Environmental Protection Agency. SPARC, Ver 4.6. Washington, DC
    • US Environmental Protection Agency. 2011. SPARC, Ver 4.6. Washington, DC.
    • (2011)
  • 25
    • 84876410962 scopus 로고    scopus 로고
    • Organisation for Economic Co-operation and Development (OECD). OECD guidelines for the testing of chemicals/section 3: Degradation and accumulation test no. 314: Simulation tests to assess the biodegradability of chemicals discharged in wastewater. Paris, France
    • Organisation for Economic Co-operation and Development (OECD). 1996. OECD guidelines for the testing of chemicals/section 3: Degradation and accumulation test no. 314: Simulation tests to assess the biodegradability of chemicals discharged in wastewater. Paris, France.
    • (1996)
  • 26
    • 84861849210 scopus 로고    scopus 로고
    • Screening for PBT chemicals among the "existing" and "new" chemicals of the EU
    • Strempel S, Scheringer M, Ng CA, Hungerbühler K. 2012. Screening for PBT chemicals among the "existing" and "new" chemicals of the EU. Environ Sci Technol 46:5680-5687.
    • (2012) Environ Sci Technol , vol.46 , pp. 5680-5687
    • Strempel, S.1    Scheringer, M.2    Ng, C.A.3    Hungerbühler, K.4
  • 27
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • Tropsha A. 2010. Best practices for QSAR model development, validation, and exploitation. Molecular Informatics 29:476-488.
    • (2010) Molecular Informatics , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. 1997. Wrappers for feature subset selection. Artif Intell 97:273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 29
    • 77958158373 scopus 로고    scopus 로고
    • Feature selection with the Boruta package
    • Kursa MB, Rudnicki WR. 2010. Feature selection with the Boruta package. J Stat Softw 36:1-13.
    • (2010) J Stat Softw , vol.36 , pp. 1-13
    • Kursa, M.B.1    Rudnicki, W.R.2
  • 30
    • 84876412663 scopus 로고    scopus 로고
    • caret: Classification and regression training. R package, Ver 4.76. Comprehensive R Archive Network (CRAN), Wien, Austria
    • Kuhn M. 2011. caret: Classification and regression training. R package, Ver 4.76. Comprehensive R Archive Network (CRAN), Wien, Austria.
    • (2011)
    • Kuhn, M.1
  • 31
    • 84862515469 scopus 로고    scopus 로고
    • Review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches
    • Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. 2012. Review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cy C 42:463-484.
    • (2012) IEEE Trans Syst Man Cy C , vol.42 , pp. 463-484
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 34
    • 84876418625 scopus 로고    scopus 로고
    • SMARTS patterns for functional group classification. Inte:Ligand Software-Entwicklungs und Consulting GmbH, Maria Enzersdorf, Austria
    • Laggner C. 2005. SMARTS patterns for functional group classification. Inte:Ligand Software-Entwicklungs und Consulting GmbH, Maria Enzersdorf, Austria.
    • (2005)
    • Laggner, C.1
  • 36
    • 0032714220 scopus 로고    scopus 로고
    • Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs
    • Kelder J, Grootenhuis PDJ, Bayada DM, Delbressine LPC, Ploemen JP. 1999. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 16:1514-1519.
    • (1999) Pharm Res , vol.16 , pp. 1514-1519
    • Kelder, J.1    Grootenhuis, P.D.J.2    Bayada, D.M.3    Delbressine, L.P.C.4    Ploemen, J.P.5
  • 38
    • 77249087741 scopus 로고    scopus 로고
    • Use of quantitative structure activity relationships (QSARs) in the categorization of discrete organic substances on Canada's Domestic Substance List (DSL)
    • Robinson P, MacDonald D, Davidson N, Okonski A, Sene A. 2004. Use of quantitative structure activity relationships (QSARs) in the categorization of discrete organic substances on Canada's Domestic Substance List (DSL). Environ Informat Arch 2:69-78.
    • (2004) Environ Informat Arch , vol.2 , pp. 69-78
    • Robinson, P.1    MacDonald, D.2    Davidson, N.3    Okonski, A.4    Sene, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.