메뉴 건너뛰기




Volumn 496, Issue 7445, 2013, Pages 363-366

Visualization of an endogenous retinoic acid gradient across embryonic development

Author keywords

[No Author keywords available]

Indexed keywords

CYAN FLUORESCENT PROTEIN; MORPHOGEN; RETINOIC ACID RECEPTOR; YELLOW FLUORESCENT PROTEIN;

EID: 84876294515     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature12037     Document Type: Article
Times cited : (166)

References (37)
  • 1
    • 0032563161 scopus 로고    scopus 로고
    • Molecular dissection of Hox gene induction and maintenance in the hindbrain
    • Stern, C. D. & Foley, A. C. Molecular dissection of Hox gene induction and maintenance in the hindbrain. Cell 94, 143-145 (1998).
    • (1998) Cell , vol.94 , pp. 143-145
    • Stern, C.D.1    Foley, A.C.2
  • 2
    • 2942601239 scopus 로고    scopus 로고
    • Beyond the neckless phenotype: Influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain
    • Begemann, G., Marx, M., Mebus, K.,Meyer, A.&Bastmeyer, M. Beyond the neckless phenotype: influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain. Dev. Biol. 271, 119-129 (2004).
    • (2004) Dev. Biol. , vol.271 , pp. 119-129
    • Begemann, G.1    Marx, M.2    Mebus, K.3    Meyer, A.4    Bastmeyer, M.5
  • 3
    • 25844433599 scopus 로고    scopus 로고
    • Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid
    • Maves, L. & Kimmel, C. B. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev. Biol. 285, 593-605 (2005).
    • (2005) Dev. Biol. , vol.285 , pp. 593-605
    • Maves, L.1    Kimmel, C.B.2
  • 4
    • 21244494831 scopus 로고    scopus 로고
    • Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression
    • Sirbu, I. O., Gresh, L., Barra, J. & Duester, G. Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 132, 2611-2622 (2005).
    • (2005) Development , vol.132 , pp. 2611-2622
    • Sirbu, I.O.1    Gresh, L.2    Barra, J.3    Duester, G.4
  • 5
    • 33846545127 scopus 로고    scopus 로고
    • Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development
    • Hernandez, R. E., Putzke, A. P., Myers, J. P., Margaretha, L. & Moens, C. B. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development 134, 177-187 (2007).
    • (2007) Development , vol.134 , pp. 177-187
    • Hernandez, R.E.1    Putzke, A.P.2    Myers, J.P.3    Margaretha, L.4    Moens, C.B.5
  • 6
    • 37249079634 scopus 로고    scopus 로고
    • Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo
    • White, R. J., Nie, Q., Lander, A. D. & Schilling, T. F. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol. 5, e304 (2007).
    • (2007) PLoS Biol. , vol.5
    • White, R.J.1    Nie, Q.2    Lander, A.D.3    Schilling, T.F.4
  • 7
    • 0141862018 scopus 로고    scopus 로고
    • Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension
    • Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65-79 (2003).
    • (2003) Neuron , vol.40 , pp. 65-79
    • Diez Del Corral, R.1
  • 8
    • 0442294191 scopus 로고    scopus 로고
    • Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis
    • Moreno, T. A. & Kintner, C. Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev. Cell 6, 205-218 (2004).
    • (2004) Dev. Cell , vol.6 , pp. 205-218
    • Moreno, T.A.1    Kintner, C.2
  • 10
    • 54549087803 scopus 로고    scopus 로고
    • How degrading: Cyp26s in hindbrain development
    • White, R. J. & Schilling, T. F. How degrading: Cyp26s in hindbrain development. Dev. Dyn. 237, 2775-2790 (2008).
    • (2008) Dev. Dyn. , vol.237 , pp. 2775-2790
    • White, R.J.1    Schilling, T.F.2
  • 11
    • 0036745672 scopus 로고    scopus 로고
    • Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm
    • Kudoh, T., Wilson, S. W. & Dawid, I. B. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129, 4335-4346 (2002).
    • (2002) Development , vol.129 , pp. 4335-4346
    • Kudoh, T.1    Wilson, S.W.2    Dawid, I.B.3
  • 12
    • 0033636094 scopus 로고    scopus 로고
    • Dpp gradient formation in the Drosophila wing imaginal disc
    • Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971-980 (2000).
    • (2000) Cell , vol.103 , pp. 971-980
    • Teleman, A.A.1    Cohen, S.M.2
  • 13
  • 14
    • 34447104600 scopus 로고    scopus 로고
    • Stability and nuclear dynamics of the bicoid morphogen gradient
    • Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. & Tank, D. W. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141-152 (2007).
    • (2007) Cell , vol.130 , pp. 141-152
    • Gregor, T.1    Wieschaus, E.F.2    McGregor, A.P.3    Bialek, W.4    Tank, D.W.5
  • 15
    • 70349453919 scopus 로고    scopus 로고
    • Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules
    • Yu, S. R. et al. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533-536 (2009).
    • (2009) Nature , vol.461 , pp. 533-536
    • Yu, S.R.1
  • 16
    • 84860837026 scopus 로고    scopus 로고
    • Differential diffusivity of Nodal and Lefty underlies a reactiondiffusion patterning system
    • Müller, P. et al. Differential diffusivity of Nodal and Lefty underlies a reactiondiffusion patterning system. Science 336, 721-724 (2012).
    • (2012) Science , vol.336 , pp. 721-724
    • Müller, P.1
  • 17
    • 84856745520 scopus 로고    scopus 로고
    • Retinoic acid signalling during development
    • Rhinn, M. & Dollé, P. Retinoic acid signalling during development. Development 139, 843-858 (2012).
    • (2012) Development , vol.139 , pp. 843-858
    • Rhinn, M.1    Dollé, P.2
  • 18
    • 0014968933 scopus 로고
    • Diffusion in embryogenesis
    • Crick, F. Diffusion in embryogenesis. Nature 225, 420-423 (1970).
    • (1970) Nature , vol.225 , pp. 420-423
    • Crick, F.1
  • 19
    • 0014593403 scopus 로고
    • Positional information and the spatial pattern of cellular differentiation
    • Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1-47 (1969).
    • (1969) J. Theor. Biol. , vol.25 , pp. 1-47
    • Wolpert, L.1
  • 20
    • 0023582874 scopus 로고
    • Characterization of concentration gradients of a morphologically active retinoid in the chick limb bud
    • Eichele, G. & Thaller, C. Characterization of concentration gradients of a morphologically active retinoid in the chick limb bud. J. Cell Biol. 105, 1917-1923 (1987).
    • (1987) J. Cell Biol. , vol.105 , pp. 1917-1923
    • Eichele, G.1    Thaller, C.2
  • 21
    • 0035162208 scopus 로고    scopus 로고
    • Retinoic acid-mediated gene expression in transgenic reporter zebrafish
    • Perz-Edwards, A., Hardison, N. L. & Linney, E. Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev. Biol. 229, 89-101 (2001).
    • (2001) Dev. Biol. , vol.229 , pp. 89-101
    • Perz-Edwards, A.1    Hardison, N.L.2    Linney, E.3
  • 22
    • 12944336526 scopus 로고    scopus 로고
    • Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish
    • Emoto, Y., Wada, H., Okamoto, H., Kudo, A. & Imai, Y. Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish. Dev. Biol. 278, 415-427 (2005).
    • (2005) Dev. Biol. , vol.278 , pp. 415-427
    • Emoto, Y.1    Wada, H.2    Okamoto, H.3    Kudo, A.4    Imai, Y.5
  • 23
    • 0035214904 scopus 로고    scopus 로고
    • Fgf/MAPK signaling is a crucial positional cue in somite boundary formation
    • Sawada, A. et al. Fgf/MAPK signaling is a crucial positional cue in somite boundary formation. Development 128, 4873-4880 (2001).
    • (2001) Development , vol.128 , pp. 4873-4880
    • Sawada, A.1
  • 24
    • 0035958586 scopus 로고    scopus 로고
    • FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation
    • Dubrulle, J., McGrew, M. J. & Pourquié, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219-232 (2001).
    • (2001) Cell , vol.106 , pp. 219-232
    • Dubrulle, J.1    McGrew, M.J.2    Pourquié, O.3
  • 25
    • 0034904642 scopus 로고    scopus 로고
    • Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown
    • Draper, B. W., Morcos, P. A. & Kimmel, C. B. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30, 154-156 (2001).
    • (2001) Genesis , vol.30 , pp. 154-156
    • Draper, B.W.1    Morcos, P.A.2    Kimmel, C.B.3
  • 26
    • 12644252914 scopus 로고    scopus 로고
    • Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain
    • Brand, M. et al. Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123, 179-190 (1996).
    • (1996) Development , vol.123 , pp. 179-190
    • Brand, M.1
  • 27
    • 0031926506 scopus 로고    scopus 로고
    • Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis
    • Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381-2395 (1998).
    • (1998) Development , vol.125 , pp. 2381-2395
    • Reifers, F.1
  • 28
    • 29144461004 scopus 로고    scopus 로고
    • Retinoic acid activatesmyogenesis in vivo through Fgf8 signalling
    • Hamade, A. et al. Retinoic acid activatesmyogenesis in vivo through Fgf8 signalling. Dev. Biol. 289, 127-140 (2006).
    • (2006) Dev. Biol. , vol.289 , pp. 127-140
    • Hamade, A.1
  • 29
    • 0032831815 scopus 로고    scopus 로고
    • Interactions of retinoid binding proteins and enzymes in retinoid metabolism
    • Napoli, J. L. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim. Biophys. Acta 1440, 139-162 (1999).
    • (1999) Biochim. Biophys. Acta , vol.1440 , pp. 139-162
    • Napoli, J.L.1
  • 31
    • 24644519490 scopus 로고    scopus 로고
    • The transcriptional landscape of the mammalian genome
    • Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559-1563 (2005).
    • (2005) Science , vol.309 , pp. 1559-1563
    • Carninci, P.1
  • 32
    • 0034662504 scopus 로고    scopus 로고
    • Role of Ser289 in RARc and its homologous amino acid residue of RARa and RARb in the binding of retinoic acid
    • Zhang, Z. P. et al. Role of Ser289 in RARc and its homologous amino acid residue of RARa and RARb in the binding of retinoic acid. Arch. Biochem. Biophys. 380, 339-346 (2000).
    • (2000) Arch. Biochem. Biophys. , vol.380 , pp. 339-346
    • Zhang, Z.P.1
  • 33
    • 0034662681 scopus 로고    scopus 로고
    • Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis
    • Sawano, A. & Miyawaki, A. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 15, e78 (2000).
    • (2000) Nucleic Acids Res. , vol.15
    • Sawano, A.1    Miyawaki, A.2
  • 34
    • 33750433896 scopus 로고    scopus 로고
    • Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition
    • Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genesis 174, 639-649 (2006).
    • (2006) Genesis , vol.174 , pp. 639-649
    • Urasaki, A.1    Morvan, G.2    Kawakami, K.3
  • 35
    • 0030218042 scopus 로고    scopus 로고
    • Nuclear import of cellular retinoic acid-binding protein type i in mouse embryonic cells
    • Gustafson, A. L., Donovan, M., Annerwall, E., Dencker, L. & Eriksson, U. Nuclear import of cellular retinoic acid-binding protein type I in mouse embryonic cells. Mech. Dev. 58, 27-38 (1996).
    • (1996) Mech. Dev. , vol.58 , pp. 27-38
    • Gustafson, A.L.1    Donovan, M.2    Annerwall, E.3    Dencker, L.4    Eriksson, U.5
  • 36
    • 0033588225 scopus 로고    scopus 로고
    • Distinct roles for cellular retinoic acid-binding proteins i and II in regulatingsignalingby retinoic acid
    • Dong, D., Ruuska, S. E., Levinthal, D. J. & Noy, N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulatingsignalingby retinoic acid. J. Biol. Chem. 274, 23695-23698 (1999).
    • (1999) J. Biol. Chem. , vol.274 , pp. 23695-23698
    • Dong, D.1    Ruuska, S.E.2    Levinthal, D.J.3    Noy, N.4
  • 37
    • 0028102740 scopus 로고
    • Measurement of subnanomolar retinoic acid binding affinities for cellular retinoic acid binding proteins by fluorometric titration
    • Norris, A. W., Cheng, L., Giguère, V., Rosenberger, M. & Li, E. Measurement of subnanomolar retinoic acid binding affinities for cellular retinoic acid binding proteins by fluorometric titration. Biochim. Biophys. Acta 1209, 10-18 (1994).
    • (1994) Biochim. Biophys. Acta , vol.1209 , pp. 10-18
    • Norris, A.W.1    Cheng, L.2    Giguère, V.3    Rosenberger, M.4    Li, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.