메뉴 건너뛰기




Volumn 45, Issue , 2013, Pages 83-93

A hierarchical clusterer ensemble method based on boosting theory

Author keywords

Boosting; Ensemble; Hierarchical clustering; R nyi

Indexed keywords

BOOSTING; CLASSIFIER ENSEMBLES; CLUSTERING ACCURACY; CONSENSUS CLUSTERING; ENSEMBLE; HIER-ARCHICAL CLUSTERING; INFORMATION-THEORETIC APPROACH; INTERMEDIATE STRUCTURES;

EID: 84876282278     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.02.009     Document Type: Article
Times cited : (33)

References (57)
  • 8
    • 80051929313 scopus 로고    scopus 로고
    • A novel multi-clustering method for hierarchical clusterings based on boosting
    • Tehran, Iran
    • E. Rashedi, A. Mirzaei, A novel multi-clustering method for hierarchical clusterings based on boosting, in: 19th Iranian Conference on Electrical Engineering, Tehran, Iran, 2011, pp. 1-4.
    • (2011) 19th Iranian Conference on Electrical Engineering , pp. 1-4
    • Rashedi, E.1    Mirzaei, A.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 1996 123 140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • S. Dudoit, and J. Fridlyand Bagging to improve the accuracy of a clustering procedure Bioinformatics 19 2003 1090 1099
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 13
    • 84959774562 scopus 로고
    • Consensus techniques and the comparison of taxonomic trees
    • E.N. Adams Consensus techniques and the comparison of taxonomic trees Systematic Biology 21 1972 390 397
    • (1972) Systematic Biology , vol.21 , pp. 390-397
    • Adams, E.N.1
  • 14
    • 0000090670 scopus 로고
    • N-trees as nestings: Complexity, similarity, and consensus
    • E.N. Adams N-trees as nestings: complexity, similarity, and consensus Journal of Classification 3 1986 299 317
    • (1986) Journal of Classification , vol.3 , pp. 299-317
    • Adams, E.N.1
  • 20
    • 0023491749 scopus 로고
    • Bootstrap technique in cluster analysis
    • A.K. Jain, and J.V. Moreau Bootstrap technique in cluster analysis Pattern Recognition 20 1987 547 568
    • (1987) Pattern Recognition , vol.20 , pp. 547-568
    • Jain, A.K.1    Moreau, J.V.2
  • 22
    • 80051922227 scopus 로고    scopus 로고
    • Mixtures of clusterings by boosting
    • Hilton Clearwater
    • J. Chang, D.M. Blei, Mixtures of clusterings by boosting, in: Learning Workshop, Hilton Clearwater, 2009.
    • (2009) Learning Workshop
    • Chang, J.1    Blei, D.M.2
  • 24
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1997 119 139
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 26
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund Boosting a weak learning algorithm by majority Information and Computation 2 1995 256 285
    • (1995) Information and Computation , vol.2 , pp. 256-285
    • Freund, Y.1
  • 28
    • 75749158471 scopus 로고    scopus 로고
    • On voting-based consensus of cluster ensembles
    • H.G. Ayad, and M.S. Kamel On voting-based consensus of cluster ensembles Pattern Recognition 43 2010 1943 1953
    • (2010) Pattern Recognition , vol.43 , pp. 1943-1953
    • Ayad, H.G.1    Kamel, M.S.2
  • 30
    • 84957012677 scopus 로고    scopus 로고
    • Finding consistent clusters in data partitions
    • A. Fred Finding consistent clusters in data partitions Multiple Classifier Systems 2001 309 318
    • (2001) Multiple Classifier Systems , pp. 309-318
    • Fred, A.1
  • 33
    • 33745771946 scopus 로고    scopus 로고
    • Heterogeneous clustering ensemble method for combining different cluster results
    • H.-S. Yoon, S.-Y. Ahn, S.-H. Lee, S.-B. Cho, J.H. Kim, Heterogeneous clustering ensemble method for combining different cluster results, BioDM 2006, LNBI, 3916 (2006) 82-92.
    • (2006) BioDM 2006, LNBI , vol.3916 , pp. 82-92
    • Yoon, H.-S.1    Ahn, S.-Y.2    Lee, S.-H.3    Cho, S.-B.4    Kim, J.H.5
  • 34
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles: A knowledge reuse framework for combining multiple partitions
    • A. Strehl, and J. Ghosh Cluster ensembles: a knowledge reuse framework for combining multiple partitions Journal of Machine Learning Research 3 2002 583 617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 39
    • 49749129595 scopus 로고    scopus 로고
    • Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
    • IEEE Computer Society Washington, DC, USA
    • T. Li, C. Ding, and M.I. Jordan Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization 7th International Conference of Data Mining (ICDM) 2007 IEEE Computer Society Washington, DC, USA 577 582
    • (2007) 7th International Conference of Data Mining (ICDM) , pp. 577-582
    • Li, T.1    Ding, C.2    Jordan, M.I.3
  • 40
    • 80051948112 scopus 로고    scopus 로고
    • Combining hierarchical clusterings with emphasis on retaining the structural contents of the base clusterings
    • Amir-kabir University of Technology, Tehran
    • A. Mirzaei, Combining hierarchical clusterings with emphasis on retaining the structural contents of the base clusterings, in: Computer Engineering & IT Department, Amir-kabir University of Technology, Tehran, 2009.
    • (2009) Computer Engineering & IT Department
    • Mirzaei, A.1
  • 41
  • 43
    • 76849100191 scopus 로고    scopus 로고
    • A novel hierarchical-clustering-combination scheme based on fuzzy-similarity relations
    • A. Mirzaei, and M. Rahmati A novel hierarchical-clustering-combination scheme based on fuzzy-similarity relations IEEE Transactions on Fuzzy Systems 18 2010 27 39
    • (2010) IEEE Transactions on Fuzzy Systems , vol.18 , pp. 27-39
    • Mirzaei, A.1    Rahmati, M.2
  • 44
  • 45
    • 0034335444 scopus 로고    scopus 로고
    • Simulation of random dendrograms and comparison tests: Some comments
    • J. Podani Simulation of random dendrograms and comparison tests: some comments Journal of Classification 17 2000 123 142
    • (2000) Journal of Classification , vol.17 , pp. 123-142
    • Podani, J.1
  • 48
    • 0020848951 scopus 로고
    • A survey of recent advances in hierarchical clustering algorithms
    • F. Murtagh A survey of recent advances in hierarchical clustering algorithms The Computer Journal 26 1983 354 359
    • (1983) The Computer Journal , vol.26 , pp. 354-359
    • Murtagh, F.1
  • 50
    • 84869159980 scopus 로고    scopus 로고
    • Real medical data sets: Technical report
    • University of Waless, Bangor, UK
    • L. Kuncheva, Real medical data sets: technical report, in: School of Informatics, University of Waless, Bangor, UK, 2005.
    • (2005) School of Informatics
    • Kuncheva, L.1
  • 51
    • 0002471149 scopus 로고
    • The comparison of dendrograms by objective methods
    • R.R. Sokal, and F.J. Rohlf The comparison of dendrograms by objective methods Taxon 11 1962 33 40
    • (1962) Taxon , vol.11 , pp. 33-40
    • Sokal, R.R.1    Rohlf, F.J.2
  • 52
    • 0010079412 scopus 로고
    • Comparing cluster analyses with cophenetic correlation
    • V.P. Lessig Comparing cluster analyses with cophenetic correlation Journal of Marketing Research 9 1972 82 84
    • (1972) Journal of Marketing Research , vol.9 , pp. 82-84
    • Lessig, V.P.1
  • 53
    • 84963037002 scopus 로고
    • Tests for hierarchical structure in random data sets
    • F.J. Rohlf, and D.R. Fisher Tests for hierarchical structure in random data sets Systematic Biology 17 1968 407
    • (1968) Systematic Biology , vol.17 , pp. 407
    • Rohlf, F.J.1    Fisher, D.R.2
  • 55
    • 0000130569 scopus 로고
    • Multiple range and multiple F tests
    • D.B. Duncan Multiple range and multiple F tests Biometrics 11 1995 1 42
    • (1995) Biometrics , vol.11 , pp. 1-42
    • Duncan, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.