메뉴 건너뛰기




Volumn 12, Issue 6, 2008, Pages 549-571

A new method for hierarchical clustering combination

Author keywords

Cluster ensembles; Clustering; Clustering combination; Hierarchical clustering

Indexed keywords


EID: 58049085518     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2008-12603     Document Type: Article
Times cited : (35)

References (56)
  • 1
    • 35248893423 scopus 로고    scopus 로고
    • H. Ayad and M. Kamel, Finding Natural clusters using multi-clusterer combiner based on shared nearest neighbors, in: Proc. 4th International Workshop on Multiple Classifier Systems, 2709 of Lecture Notes in Computer Science, T. Windeatt and F. Roli, eds, Guildford, UK, 2003, Speringer-Verlag, pp. 166-175.
    • H. Ayad and M. Kamel, Finding Natural clusters using multi-clusterer combiner based on shared nearest neighbors, in: Proc. 4th International Workshop on Multiple Classifier Systems, volume 2709 of Lecture Notes in Computer Science, T. Windeatt and F. Roli, eds, Guildford, UK, 2003, Speringer-Verlag, pp. 166-175.
  • 4
    • 0036359730 scopus 로고    scopus 로고
    • A stability based method for discovering structure in clustered data
    • R.B. Aetman, ed, New Jersey World Scientific Publishing Co
    • A. Ben-Hur, A. Elisseeff and I. Guyon, A stability based method for discovering structure in clustered data, in: Pacific Symposium on Biocomputing, R.B. Aetman, ed., New Jersey World Scientific Publishing Co., 2002, pp. 6-17.
    • (2002) Pacific Symposium on Biocomputing , pp. 6-17
    • Ben-Hur, A.1    Elisseeff, A.2    Guyon, I.3
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24(2) (1996), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • L. Breiman, Random Forests, Machine Learning 45(1) (2001), 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • J. Kittler and F. Roli, eds, Cagliari, Italy, Speringer-Verlag, pp
    • T. Dietterich, Ensemble methods in machine learning, in: Proc. of the First Int. Workshop on Multiple Classifier Systems, J. Kittler and F. Roli, eds, Cagliari, Italy, 2000, Speringer-Verlag, pp. 1-15.
    • (2000) Proc. of the First Int. Workshop on Multiple Classifier Systems , pp. 1-15
    • Dietterich, T.1
  • 11
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of clustering procedure
    • S. Dudoit and J. Fridlyand, Bagging to improve the accuracy of clustering procedure, Bioinformatics 19(9) (2003), 1090-1099.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 12
    • 84941155240 scopus 로고
    • Well separated clusters and fuzzy partitions
    • J.C. Dunn, Well separated clusters and fuzzy partitions, J Cybernet 4 (1974), 95-104.
    • (1974) J Cybernet , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 15
    • 84957012677 scopus 로고    scopus 로고
    • A.L.N. Fred, Finding consistent clusters in data partitions, in: Proc. 2nd International Workshop on Multiple Classifier Systems, 2096 of Lecture Notes in Computer Science, F. Roli and J. Kittler, eds, Cambridge, UK, Speringer-Verlag, 2001, pp. 309-318.
    • A.L.N. Fred, Finding consistent clusters in data partitions, in: Proc. 2nd International Workshop on Multiple Classifier Systems, vol. 2096 of Lecture Notes in Computer Science, F. Roli and J. Kittler, eds, Cambridge, UK, Speringer-Verlag, 2001, pp. 309-318.
  • 22
    • 0035676057 scopus 로고    scopus 로고
    • On clustering validation techniques
    • M. Halkidi et al., On clustering validation techniques, J Intelligent Inform System 17 (2001), 107-145.
    • (2001) J Intelligent Inform System , vol.17 , pp. 107-145
    • Halkidi, M.1
  • 23
    • 0000008146 scopus 로고
    • Comparing partitions
    • A. Hubert, Comparing partitions, J Classification 2 (1985), 193-198.
    • (1985) J Classification , vol.2 , pp. 193-198
    • Hubert, A.1
  • 26
    • 1342282152 scopus 로고    scopus 로고
    • A Fourier spectrum-based approach to represent decision trees for mining data streams in mobile environments
    • H. Kargupta and B.H. Park, A Fourier spectrum-based approach to represent decision trees for mining data streams in mobile environments, IEEE Trans Knowledge and Data Engineering 16(2) (2002), 216-229.
    • (2002) IEEE Trans Knowledge and Data Engineering , vol.16 , Issue.2 , pp. 216-229
    • Kargupta, H.1    Park, B.H.2
  • 30
    • 11944258901 scopus 로고
    • A statistical framework to test the consensus among additive trees (clandograms)
    • J. Lapointe and P. Legendre, A statistical framework to test the consensus among additive trees (clandograms), JSTOR, Systematic Biology 41(2) (1992), 158-171.
    • (1992) JSTOR, Systematic Biology , vol.41 , Issue.2 , pp. 158-171
    • Lapointe, J.1    Legendre, P.2
  • 33
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov and T. Golub, Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data, Machine Learning 52 (2003), 91-118.
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 36
    • 0034335444 scopus 로고    scopus 로고
    • simulation of random dendrograms and comparison tests: Some comments
    • J. Podani, simulation of random dendrograms and comparison tests: Some comments, Journal of Classification 17 (2004), 123-142.
    • (2004) Journal of Classification , vol.17 , pp. 123-142
    • Podani, J.1
  • 37
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. Rand, Objective criteria for the evaluation of clustering methods, J Am Stat Assoc 66 (1971), 846-850.
    • (1971) J Am Stat Assoc , vol.66 , pp. 846-850
    • Rand, W.1
  • 39
    • 58049122700 scopus 로고    scopus 로고
    • H.C. 39, Cluster Analysis for Researchers, Belmont, 1984.
    • H.C. 39, Cluster Analysis for Researchers, Belmont, 1984.
  • 40
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J Comput Appl Math 20 (1987), 53-65.
    • (1987) J Comput Appl Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 41
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire, The strength of weak learnability, Machine Learning 5(2) (1990), 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 42
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • Strehl, J. Ghosh, Cluster ensembles - a knowledge reuse framework for combining multiple partitions, The Journal of Machine Learning Research 3 (2002), 583-617.
    • (2002) The Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, J.G.1
  • 43
    • 0041995204 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining partitions
    • AAAI/MIT Press
    • Strehl, J. Ghosh, Cluster ensembles - a knowledge reuse framework for combining partitions, in: Proc. of AAAI, AAAI/MIT Press, 2002.
    • (2002) Proc. of AAAI
    • Strehl, J.G.1
  • 48
    • 33744922637 scopus 로고    scopus 로고
    • Modifications to fuzzy ARTMAP motivated by boosting theory
    • Boosted ARTMAP
    • S.J. Verzi, G.L. Heileman and M. Georgiopoulos, Boosted ARTMAP: Modifications to fuzzy ARTMAP motivated by boosting theory, Neural Networks 19(4) (2006), 446-468.
    • (2006) Neural Networks , vol.19 , Issue.4 , pp. 446-468
    • Verzi, S.J.1    Heileman, G.L.2    Georgiopoulos, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.