메뉴 건너뛰기




Volumn , Issue , 2002, Pages 515-524

Evaluation of hierarchical clustering algorithms for document datasets

Author keywords

Agglomerative clustering; Hierarchical clustering; Partitional clustering

Indexed keywords

DATA MINING; DATA STRUCTURES; DATABASE SYSTEMS; GRAPH THEORY; INFORMATION RETRIEVAL SYSTEMS; MERGING;

EID: 0038156237     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/584792.584877     Document Type: Conference Paper
Times cited : (418)

References (32)
  • 2
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • D. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4), 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4
    • Boley, D.1
  • 5
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (autoclass): Theory and results
    • In U. Fayyad, G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy, editors; AAAI/MIT Press
    • P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory and results. In U. Fayyad, G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 153-180. AAAI/MIT Press, 1996.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 6
    • 0026961606 scopus 로고
    • Scatter/gather: A cluster-based approach to browsing large document collections
    • Copenhagen
    • D. Cutting, J. Pedersen, D. Karger, and J. Tukey. Scatter/gather: A cluster-based approach to browsing large document collections. In Proceedings of the ACM SIGIR, pages pages 318-329, Copenhagen, 1992.
    • (1992) Proceedings of the ACM SIGIR , pp. 318-329
    • Cutting, D.1    Pedersen, J.2    Karger, D.3    Tukey, J.4
  • 7
    • 9444247728 scopus 로고    scopus 로고
    • Concept decomposition for large sparse text data using clustering
    • Technical Report Research Report RJ 10147, IBM Almadan Research Center
    • I. Dhillon and D. Modha. Concept decomposition for large sparse text data using clustering. Technical Report Research Report RJ 10147, IBM Almadan Research Center, 1999.
    • (1999)
    • Dhillon, I.1    Modha, D.2
  • 8
    • 0012951994 scopus 로고    scopus 로고
    • Spectral min-max cut for graph partitioning and data clustering
    • Technical Report TR-2001-XX, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA
    • C. Ding, X. He, H. Zha, M. Gu, and H. Simon. Spectral min-max cut for graph partitioning and data clustering. Technical Report TR-2001-XX, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 2001.
    • (2001)
    • Ding, C.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.5
  • 15
    • 0008690062 scopus 로고    scopus 로고
    • Concept indexing: A fast dimensionality reduction algorithm with applications to document retrieval & categorization
    • Technical Report TR-00-016, Department of Computer Science, University of Minnesota, Minneapolis
    • G. Karypis and E. Han. Concept indexing: A fast dimensionality reduction algorithm with applications to document retrieval & categorization. Technical Report TR-00-016, Department of Computer Science, University of Minnesota, Minneapolis, 2000. Available on the WWW at URL http://www.cs.umn.edu/~karypis.
    • (2000)
    • Karypis, G.1    Han, E.2
  • 16
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E. Han, and V. Kumar. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 32(8):68-75, 1999.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 20
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proc. 5th Symp. Math. Statist, Prob., pages 281-297, 1967.
    • (1967) Proc. 5th Symp. Math. Statist, Prob. , pp. 281-297
    • MacQueen, J.1
  • 22
    • 0003136237 scopus 로고
    • Efficient and effective clustering method for spatial data mining
    • Santiago, Chile
    • R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. In Proc. of the 20th VLDB Conference, pages 144-155, Santiago, Chile, 1994.
    • (1994) Proc. of the 20th VLDB Conference , pp. 144-155
    • Ng, R.1    Han, J.2
  • 23
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980.
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.F.1
  • 24
    • 0003882234 scopus 로고
    • Automatic text processing: The transformation, analysis, and retrieval of information by computer
    • Addison-Wesley
    • G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, 1989.
    • (1989)
    • Salton, G.1
  • 27
    • 0001191328 scopus 로고    scopus 로고
    • Scalable approach to balanced, high-dimensional clustering of market-baskets
    • A. Strehl and J. Ghosh. Scalable approach to balanced, high-dimensional clustering of market-baskets. In Proceedings of HiPC, 2000.
    • Proceedings of HiPC, 2000
    • Strehl, A.1    Ghosh, J.2
  • 30
    • 0037869202 scopus 로고    scopus 로고
    • Yahoo! Yahoo!
    • Yahoo! Yahoo! http://www.yahoo.com.
  • 31
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • K. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, (C-20):68-86, 1971.
    • (1971) IEEE Transactions on Computers , vol.C-20 , pp. 68-86
    • Zahn, K.1
  • 32
    • 0037869164 scopus 로고    scopus 로고
    • Criterion functions for document clustering: Experiments and analysis
    • Technical Report TR #01-40, Department of Computer Science, University of Minnesota, Minneapolis, MN
    • Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments and analysis. Technical Report TR #01-40, Department of Computer Science, University of Minnesota, Minneapolis, MN, 2001. Available on the WWW at http://cs.umn.edu/~karypis/publications.
    • (2001)
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.