-
3
-
-
77956705971
-
Variational methods in nonlinear fiber-optics and related fields
-
B.A. Malomed Variational methods in nonlinear fiber-optics and related fields Prog. Opt. 43 2002 71 193
-
(2002)
Prog. Opt.
, vol.43
, pp. 71-193
-
-
Malomed, B.A.1
-
4
-
-
40049094480
-
-
Springer Series on Atomic, Optical, and Plasma Physics
-
P.G. Kevrekidis, D.J. Frantzeskakis, and R. Carretero-González Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment Springer Series on Atomic, Optical, and Plasma Physics vol. 45 2008
-
(2008)
Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment
, vol.45 VOL.
-
-
Kevrekidis, P.G.1
Frantzeskakis, D.J.2
Carretero-González, R.3
-
5
-
-
41349089335
-
Generic features of modulational instability in nonlocal kerr media
-
J. Wyller, W. Królikowski, O. Bang, and J.J. Rasmussen Generic features of modulational instability in nonlocal kerr media Phys. Rev. E 66 2002 066615
-
(2002)
Phys. Rev. e
, vol.66
, pp. 066615
-
-
Wyller, J.1
Królikowski, W.2
Bang, O.3
Rasmussen, J.J.4
-
6
-
-
0004071139
-
Self-focusing of plane dark solitons in nonlinear defocusing media
-
D.E. Pelinovsky, Y.A. Stepanyants, and Yu.S. Kivshar Self-focusing of plane dark solitons in nonlinear defocusing media Phys. Rev. E 51 1995 5016
-
(1995)
Phys. Rev. e
, vol.51
, pp. 5016
-
-
Pelinovsky, D.E.1
Stepanyants, Y.A.2
Kivshar, Yu.S.3
-
7
-
-
0001947326
-
Iterative and parallel performance of high-order compact systems
-
PII S106482759630379X
-
W.F. Spotz, and G.F. Carey Iterative and parallel performance of high-order compact systems SIAM J. Sci. Comput. 19 1 1998 1 14 (Pubitemid 128617494)
-
(1998)
SIAM Journal of Scientific Computing
, vol.19
, Issue.1
, pp. 1-14
-
-
Spotz, W.F.1
Carey, G.F.2
-
8
-
-
0032030123
-
An explicit fourth-order compact finite difference scheme for three-dimensional convection-diffusion equation
-
J. Zhang An explicit fourth-order compact finite difference scheme for three-dimensional convection-diffusion equation Commun. Numer. Methods Eng. 14 1998 209 218 (Pubitemid 128547393)
-
(1998)
Communications in Numerical Methods in Engineering
, vol.14
, Issue.3
, pp. 209-218
-
-
Zhang, J.1
-
10
-
-
0029380108
-
High-order compact scheme for the steady stream-function vorticity equations
-
W.F. Spotz, and G.F. Carey High-order compact scheme for the steady stream-function vorticity equations Internat. J. Numer. Methods Engrg. 38 20 1995 3497 3512
-
(1995)
Internat. J. Numer. Methods Engrg.
, vol.38
, Issue.20
, pp. 3497-3512
-
-
Spotz, W.F.1
Carey, G.F.2
-
11
-
-
0036608315
-
Symbolic computation of high order compact difference schemes for three dimensional linear elliptic partial differential equations with variable coefficients
-
DOI 10.1016/S0377-0427(01)00504-0, PII S0377042701005040
-
L. Ge, and J. Zhang Symbolic computation of high-order compact difference schemes for three-dimensional linear elliptic partial differential equations with variable coefficients J. Comput. Appl. Math. 143 2002 9 27 (Pubitemid 34689905)
-
(2002)
Journal of Computational and Applied Mathematics
, vol.143
, Issue.1
, pp. 9-27
-
-
Ge, L.1
Zhang, J.2
-
12
-
-
56949103891
-
An implicit fourth-order compact finite difference scheme for one-dimensional Burgers' equation
-
W. Liao An implicit fourth-order compact finite difference scheme for one-dimensional Burgers' equation Appl. Math. Comput. 206 2008 755 764
-
(2008)
Appl. Math. Comput.
, vol.206
, pp. 755-764
-
-
Liao, W.1
-
13
-
-
84949795680
-
Higher order compact implicit schemes for the wave equation
-
M. Ciment, and S.H. Leventhal Higher order compact implicit schemes for the wave equation Math. Comp. 29 132 1975 985 994
-
(1975)
Math. Comp.
, vol.29
, Issue.132
, pp. 985-994
-
-
Ciment, M.1
Leventhal, S.H.2
-
14
-
-
0000665727
-
Compact high-order schemes for the Euler equations
-
S. Abarbanel, and A. Kumar Compact high-order schemes for the Euler equations J. Sci. Comput. 3 1988 275 288
-
(1988)
J. Sci. Comput.
, vol.3
, pp. 275-288
-
-
Abarbanel, S.1
Kumar, A.2
-
15
-
-
0035499484
-
Extension of high-order compact schemes to time-dependent problems
-
DOI 10.1002/num.1032
-
W.F. Spotz, and G.F. Carey Extension of high-order compact schemes to time-dependent problems Numer. Methods Partial Differential Equations 17 6 2001 657 672 (Pubitemid 33655783)
-
(2001)
Numerical Methods for Partial Differential Equations
, vol.17
, Issue.6
, pp. 657-672
-
-
Spotz, W.F.1
Carey, G.F.2
-
16
-
-
0037197866
-
A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients
-
DOI 10.1002/fld.263
-
Jiten C. Kalita, D.C. Dalal, and Anoop K. Dass A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients Internat. J. Numer. Methods Fluids 38 12 2002 1111 1131 (Pubitemid 34500099)
-
(2002)
International Journal for Numerical Methods in Fluids
, vol.38
, Issue.12
, pp. 1111-1131
-
-
Kalita, J.C.1
Dalal, D.C.2
Dass, A.K.3
-
17
-
-
58549095047
-
The use of compact boundary value method for the solution of two-dimensional Schrödinger equation
-
A. Mohebbi, and M. Dehghan The use of compact boundary value method for the solution of two-dimensional Schrödinger equation J. Comput. Appl. Math. 225 2009 124 134
-
(2009)
J. Comput. Appl. Math.
, vol.225
, pp. 124-134
-
-
Mohebbi, A.1
Dehghan, M.2
-
18
-
-
33746827431
-
A semi-discrete higher order compact scheme for the unsteady two-dimensional Schrödinger equation
-
DOI 10.1016/j.cam.2005.10.032, PII S0377042705006485
-
J.C. Kalita, P. Chhabra, and S. Kumar A semi-discrete higher order compact scheme for the unsteady two-dimensional Shrödinger equation J. Comput. Appl. Math. 197 2006 141 149 (Pubitemid 44176245)
-
(2006)
Journal of Computational and Applied Mathematics
, vol.197
, Issue.1
, pp. 141-149
-
-
Kalita, J.C.1
Chhabra, P.2
Kumar, S.3
-
19
-
-
58349109895
-
Compact finite-difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation
-
S. Xie, G. Li, and S. Yi Compact finite-difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation Comput. Methods Appl. Mech. Engrg. 198 2009 1052 1060
-
(2009)
Comput. Methods Appl. Mech. Engrg.
, vol.198
, pp. 1052-1060
-
-
Xie, S.1
Li, G.2
Yi, S.3
-
20
-
-
70449631272
-
A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients
-
M. Dehghan, and A. Taleei A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients Comput. Phys. Comm. 181 2010 43 51
-
(2010)
Comput. Phys. Comm.
, vol.181
, pp. 43-51
-
-
Dehghan, M.1
Taleei, A.2
-
21
-
-
0030101001
-
A history of Runge-Kutta methods
-
DOI 10.1016/0168-9274(95)00108-5
-
J.C. Butcher A history of Runge-Kutta methods Appl. Numer. Math. 20 3 1996 247 260 (Pubitemid 126349433)
-
(1996)
Applied Numerical Mathematics
, vol.20
, Issue.3
, pp. 247-260
-
-
Butcher, J.C.1
-
26
-
-
0037774726
-
Numerical methods for the simulation of trapped nonlinear Schrödinger systems
-
V.M. Pérez-García, and X. Liu Numerical methods for the simulation of trapped nonlinear Schrödinger systems Appl. Math. Comput. 144 2-3 2003 215 235
-
(2003)
Appl. Math. Comput.
, vol.144
, Issue.23
, pp. 215-235
-
-
Pérez-García, V.M.1
Liu, X.2
-
27
-
-
48549114390
-
Analytical and numerical aspects of certain nonlinear evolution equations, II, numerical, nonlinear Schrödinger equation
-
Thiab R. Taha, and Mark I. Ablowitz Analytical and numerical aspects of certain nonlinear evolution equations, II, numerical, nonlinear Schrödinger equation J. Comput. Phys. 55 2 1984 203 230
-
(1984)
J. Comput. Phys.
, vol.55
, Issue.2
, pp. 203-230
-
-
Taha, T.R.1
Ablowitz, M.I.2
-
28
-
-
0022738251
-
Split-step methods for the solution of the nonlinear schroedinger equation
-
J.A.C. Weideman, and B.M. Herbst Split-step methods for the solution of the nonlinear Schrödinger equation SIAM J. Numer. Anal. 23 3 1986 485 507 (Pubitemid 16568170)
-
(1986)
SIAM Journal on Numerical Analysis
, vol.23
, Issue.3
, pp. 485-507
-
-
Weideman, J.A.C.1
Herbst, B.M.2
-
29
-
-
35048815987
-
Parallel implementation of the split-step Fourier method for solving nonlinear Schrödinger systems
-
S. Zoldi, V. Ruban, A. Zenchuk, and S. Burtsev Parallel implementation of the split-step Fourier method for solving nonlinear Schrödinger systems SIAM News 32 1 1999 8 9
-
(1999)
SIAM News
, vol.32
, Issue.1
, pp. 8-9
-
-
Zoldi, S.1
Ruban, V.2
Zenchuk, A.3
Burtsev, S.4
-
30
-
-
84876211152
-
Numerical stability of explicit Runge-Kutta finite-difference schemes for the nonlinear Schrödinger equation
-
arxiv:1107.4810 (submitted for publication)
-
R.M. Caplan, R. Carretero-González, Numerical stability of explicit Runge-Kutta finite-difference schemes for the nonlinear Schrödinger equation, Appl. Numer. Math. (2013) (submitted for publication). arXiv:1107.4810.
-
(2013)
Appl. Numer. Math.
-
-
Caplan, R.M.1
-
31
-
-
38049089855
-
A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation
-
M.S. Ismail A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation Appl. Math. Comput. 196 2008 273 284
-
(2008)
Appl. Math. Comput.
, vol.196
, pp. 273-284
-
-
Ismail, M.S.1
-
32
-
-
0034229732
-
Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates
-
M.M. Cerimele, M.L. Chiofalo, F. Pistella, S. Succi, and M.P. Tosi Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose-Einstein condensates Phys. Rev. E 62 1 2000 1382 1389
-
(2000)
Phys. Rev. e
, vol.62
, Issue.1
, pp. 1382-1389
-
-
Cerimele, M.M.1
Chiofalo, M.L.2
Pistella, F.3
Succi, S.4
Tosi, M.P.5
-
33
-
-
84968475282
-
Economical evaluation of Runge-Kutta formula
-
D.J. Fyfe Economical evaluation of Runge-Kutta formula Math. Comp. 20 1966 392 398
-
(1966)
Math. Comp.
, vol.20
, pp. 392-398
-
-
Fyfe, D.J.1
-
36
-
-
51149087560
-
A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations
-
X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations Commun. Comput. Phys. 4 4 2008 729 796
-
(2008)
Commun. Comput. Phys.
, vol.4
, Issue.4
, pp. 729-796
-
-
Antoine, X.1
Arnold, A.2
Besse, C.3
Ehrhardt, M.4
Schädle, A.5
-
37
-
-
84873107900
-
NLSEmagic: Nonlinear Schrödinger equation multidimensional Matlab-based GPU-accelerated integrators using compact high-order schemes
-
R.M. Caplan NLSEmagic: nonlinear Schrödinger equation multidimensional Matlab-based GPU-accelerated integrators using compact high-order schemes Comput. Phys. Comm. 184 4 2013 1250 1271
-
(2013)
Comput. Phys. Comm.
, vol.184
, Issue.4
, pp. 1250-1271
-
-
Caplan, R.M.1
|