메뉴 건너뛰기




Volumn 181, Issue 1, 2010, Pages 43-51

A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients

Author keywords

Compact split step finite difference method (SSFD); Gross Pitaevskii equation (GP); Nonlinear Schr dinger equation (NLS); Operator splitting

Indexed keywords

COMPACT SCHEMES; COMPUTATIONAL COSTS; CONSERVATION LAW; DINGER EQUATION; DISCRETIZATIONS; GROSS-PITAEVSKII EQUATION; NUMERICAL TESTS; OPERATOR-SPLITTING; SPLIT-STEP FINITE DIFFERENCE METHOD; THEORETICAL RESULT; VARIABLE COEFFICIENTS;

EID: 70449631272     PISSN: 00104655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cpc.2009.08.015     Document Type: Article
Times cited : (174)

References (61)
  • 8
    • 0001407163 scopus 로고
    • A numerical study of nonlinear Schrödinger equation solutions for microwave solitons in magnetic thin films
    • Chen M., Nash J.M., and Patton C.E. A numerical study of nonlinear Schrödinger equation solutions for microwave solitons in magnetic thin films. J. Appl. Phys. 73 (1993) 3906-3909
    • (1993) J. Appl. Phys. , vol.73 , pp. 3906-3909
    • Chen, M.1    Nash, J.M.2    Patton, C.E.3
  • 9
    • 18144389899 scopus 로고    scopus 로고
    • A fourth-order time-splitting Lagurre-Hermite pseudo-spectral method for Bose-Einstein condensates
    • Bao W., and Shen J. A fourth-order time-splitting Lagurre-Hermite pseudo-spectral method for Bose-Einstein condensates. SIAM. Sci. Comput. 26 (2005) 2010-2028
    • (2005) SIAM. Sci. Comput. , vol.26 , pp. 2010-2028
    • Bao, W.1    Shen, J.2
  • 10
    • 0037408314 scopus 로고    scopus 로고
    • Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    • Bao W., Jaksch D., and Markowich P.A. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J. Comput. Phys. 187 (2003) 318-342
    • (2003) J. Comput. Phys. , vol.187 , pp. 318-342
    • Bao, W.1    Jaksch, D.2    Markowich, P.A.3
  • 11
    • 0034229732 scopus 로고    scopus 로고
    • Numerical solution of the Gross-Pitaevskii equation using an explicit finite difference scheme: An application to trapped Bose-Einstein condensates
    • Cerimele M.M., Chiofalo M.L., Pistella F., Succi S., and Tosi M.P. Numerical solution of the Gross-Pitaevskii equation using an explicit finite difference scheme: An application to trapped Bose-Einstein condensates. Phys. Rev. E 62 (2000) 1382-1389
    • (2000) Phys. Rev. E , vol.62 , pp. 1382-1389
    • Cerimele, M.M.1    Chiofalo, M.L.2    Pistella, F.3    Succi, S.4    Tosi, M.P.5
  • 13
    • 0031251368 scopus 로고    scopus 로고
    • Nonlinear wave modulation in a cylindrical plasma
    • Stenflo L., and Yu M.Y. Nonlinear wave modulation in a cylindrical plasma. IEEE Trans. Plasma Sci. 25 (1997) 1155-1157
    • (1997) IEEE Trans. Plasma Sci. , vol.25 , pp. 1155-1157
    • Stenflo, L.1    Yu, M.Y.2
  • 14
    • 22544471562 scopus 로고    scopus 로고
    • Variable coefficient F-expansion method and its application to nonlinear Schrödinger equation
    • Zhang J.F., Dai C.Q., Yang Q., and Zhu J.M. Variable coefficient F-expansion method and its application to nonlinear Schrödinger equation. Opt. Commun. 252 (2005) 408-421
    • (2005) Opt. Commun. , vol.252 , pp. 408-421
    • Zhang, J.F.1    Dai, C.Q.2    Yang, Q.3    Zhu, J.M.4
  • 15
    • 34548107381 scopus 로고    scopus 로고
    • Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications
    • Lü X., Zhu H.W., Meng X.H., Yang Z.C., and Tian B. Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J. Math. Anal. Appl. 336 (2007) 1305-1315
    • (2007) J. Math. Anal. Appl. , vol.336 , pp. 1305-1315
    • Lü, X.1    Zhu, H.W.2    Meng, X.H.3    Yang, Z.C.4    Tian, B.5
  • 16
    • 70449687126 scopus 로고    scopus 로고
    • T. Hohage, F. Schmidt, On the numerical solution of nonlinear Schrödinger type equations in fiber Optics, ZIB-Report 02-04 (January 2002), Konrad-Zuse-Zentrum für Informations Technic Berlin
    • T. Hohage, F. Schmidt, On the numerical solution of nonlinear Schrödinger type equations in fiber Optics, ZIB-Report 02-04 (January 2002), Konrad-Zuse-Zentrum für Informations Technic Berlin
  • 17
    • 62549136973 scopus 로고    scopus 로고
    • The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients
    • Zhang J.L., Li B.A., and Wang M.L. The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients. Chaos Solitons Fractals 39 (2009) 858-865
    • (2009) Chaos Solitons Fractals , vol.39 , pp. 858-865
    • Zhang, J.L.1    Li, B.A.2    Wang, M.L.3
  • 18
    • 0003230767 scopus 로고    scopus 로고
    • Global solution of nonlinear Schrödinger equations
    • Bourgain J. Global solution of nonlinear Schrödinger equations. Amer. Math. Soc. Colloq. Publ. (1999)
    • (1999) Amer. Math. Soc. Colloq. Publ.
    • Bourgain, J.1
  • 19
    • 4444250477 scopus 로고    scopus 로고
    • Nonlinear time-dependent Schrödinger equations: The Gross-Pitaevskii equation with double-well potential
    • Sacchetti A. Nonlinear time-dependent Schrödinger equations: The Gross-Pitaevskii equation with double-well potential. J. Evol. Equ. 4 (2004) 345-369
    • (2004) J. Evol. Equ. , vol.4 , pp. 345-369
    • Sacchetti, A.1
  • 20
    • 0032666585 scopus 로고    scopus 로고
    • A quadratic B-spline finite element method for solving nonlinear Schrödinger equation
    • Dag I. A quadratic B-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Engrg. 174 (1999) 247-258
    • (1999) Comput. Methods Appl. Mech. Engrg. , vol.174 , pp. 247-258
    • Dag, I.1
  • 21
    • 0001160015 scopus 로고    scopus 로고
    • Difference schemes for solving the generalized nonlinear Schrödinger equation
    • Chang Q.S., Jia E.H., and Sun W. Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148 (1999) 397-415
    • (1999) J. Comput. Phys. , vol.148 , pp. 397-415
    • Chang, Q.S.1    Jia, E.H.2    Sun, W.3
  • 22
    • 0003172958 scopus 로고
    • Pseudo-spectral solution of nonlinear Schrödinger equations
    • Pathria D., and Morris J.L. Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87 (1990) 108-125
    • (1990) J. Comput. Phys. , vol.87 , pp. 108-125
    • Pathria, D.1    Morris, J.L.2
  • 23
    • 37649013887 scopus 로고    scopus 로고
    • Finite difference solution methods for a system of the nonlinear Schrödinger equations
    • Kurkinaitis A., and Ivanauskas F. Finite difference solution methods for a system of the nonlinear Schrödinger equations. Nonlinear Anal. Model. Control 19 (2004) 247-258
    • (2004) Nonlinear Anal. Model. Control , vol.19 , pp. 247-258
    • Kurkinaitis, A.1    Ivanauskas, F.2
  • 24
    • 0036532037 scopus 로고    scopus 로고
    • Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation
    • Chen J.B., Qin M.Z., and Tang Y.F. Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 43 (2002) 1095-1106
    • (2002) Comput. Math. Appl. , vol.43 , pp. 1095-1106
    • Chen, J.B.1    Qin, M.Z.2    Tang, Y.F.3
  • 25
    • 0034498445 scopus 로고    scopus 로고
    • Variable mesh difference schemes for solving a nonlinear Schrödinger equation with a linear damping term
    • Iyengar S.R.K., Jayaraman G., and Balasubramanian V. Variable mesh difference schemes for solving a nonlinear Schrödinger equation with a linear damping term. Comput. Math. Appl. 40 (2000) 1375-1385
    • (2000) Comput. Math. Appl. , vol.40 , pp. 1375-1385
    • Iyengar, S.R.K.1    Jayaraman, G.2    Balasubramanian, V.3
  • 26
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations
    • Reich S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations. J. Comput. Phys. 157 (2000) 473-499
    • (2000) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 27
    • 77957214313 scopus 로고
    • Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation
    • Sanz-Serna J.M., and Verwer J.G. Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation. IMA J. Numer. Anal. 6 (1986) 25-42
    • (1986) IMA J. Numer. Anal. , vol.6 , pp. 25-42
    • Sanz-Serna, J.M.1    Verwer, J.G.2
  • 28
    • 0037175405 scopus 로고    scopus 로고
    • Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media
    • Ramos J.I. Linearly implicit methods for the nonlinear Schrödinger equation in nonhomogeneous media. Appl. Math. Comput. 133 (2002) 1-28
    • (2002) Appl. Math. Comput. , vol.133 , pp. 1-28
    • Ramos, J.I.1
  • 29
    • 2942750508 scopus 로고    scopus 로고
    • A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries
    • Lai M.C., and Huang C.Y. A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries. Numer. Methods Partial Differential Equations 20 (2004) 628-638
    • (2004) Numer. Methods Partial Differential Equations , vol.20 , pp. 628-638
    • Lai, M.C.1    Huang, C.Y.2
  • 30
    • 0023331015 scopus 로고
    • Stability analysis of difference schemes for variable coefficient Schrödinger type equations
    • Chan T.F., and Shen L. Stability analysis of difference schemes for variable coefficient Schrödinger type equations. SIAM J. Numer. Anal. 24 (1987) 336-349
    • (1987) SIAM J. Numer. Anal. , vol.24 , pp. 336-349
    • Chan, T.F.1    Shen, L.2
  • 31
    • 0026818262 scopus 로고
    • An unconditionally stable three-level explicit difference scheme for the Schrödinger equation with a variable coefficient
    • Dai W. An unconditionally stable three-level explicit difference scheme for the Schrödinger equation with a variable coefficient. SIAM J. Numer. Anal. 29 (1992) 174-181
    • (1992) SIAM J. Numer. Anal. , vol.29 , pp. 174-181
    • Dai, W.1
  • 32
    • 33645984826 scopus 로고    scopus 로고
    • Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
    • Hong J., Liu Y., Muthe-Kaas H., and Zanna A. Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math. 56 (2006) 814-843
    • (2006) Appl. Numer. Math. , vol.56 , pp. 814-843
    • Hong, J.1    Liu, Y.2    Muthe-Kaas, H.3    Zanna, A.4
  • 33
    • 33646518607 scopus 로고    scopus 로고
    • Chirped soliton-like solutions for nonlinear Schrödinger equation with variable coefficients
    • Tian J., and Zhou G. Chirped soliton-like solutions for nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 262 (2006) 257-262
    • (2006) Opt. Commun. , vol.262 , pp. 257-262
    • Tian, J.1    Zhou, G.2
  • 34
    • 49149137309 scopus 로고
    • Finite difference solutions of a nonlinear Schrödinger equation
    • Delfour M., Fortin M., and Payre G. Finite difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277-288
    • (1981) J. Comput. Phys. , vol.44 , pp. 277-288
    • Delfour, M.1    Fortin, M.2    Payre, G.3
  • 35
    • 32644435892 scopus 로고    scopus 로고
    • Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
    • Dehghan M. Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simulation 71 (2006) 16-30
    • (2006) Math. Comput. Simulation , vol.71 , pp. 16-30
    • Dehghan, M.1
  • 36
    • 0041730125 scopus 로고    scopus 로고
    • On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations
    • Ivanauskas F., and Radziunas M. On convergence and stability of the explicit difference method for solution of nonlinear Schrödinger equations. SIAM J. Numer. Anal. 36 (1999) 1466-1481
    • (1999) SIAM J. Numer. Anal. , vol.36 , pp. 1466-1481
    • Ivanauskas, F.1    Radziunas, M.2
  • 37
    • 0011495032 scopus 로고    scopus 로고
    • Dufort-Frankel type methods for linear and nonlinear Schrödinger equations
    • Wu L. Dufort-Frankel type methods for linear and nonlinear Schrödinger equations. SIAM J. Numer. Anal. 33 (1996) 1526-1533
    • (1996) SIAM J. Numer. Anal. , vol.33 , pp. 1526-1533
    • Wu, L.1
  • 38
    • 0022738251 scopus 로고
    • Split-step methods for the solution of the nonlinear Schrödinger equation
    • Weideman J.A.C., and Herbst B.M. Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485-507
    • (1986) SIAM J. Numer. Anal. , vol.23 , pp. 485-507
    • Weideman, J.A.C.1    Herbst, B.M.2
  • 39
    • 26844436587 scopus 로고    scopus 로고
    • Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations
    • Wang H.Q. Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations. Appl. Math. Comput. 170 (2005) 17-35
    • (2005) Appl. Math. Comput. , vol.170 , pp. 17-35
    • Wang, H.Q.1
  • 40
    • 0042349116 scopus 로고
    • Absolute stable explicit and semi-explicit schemes for Schrödinger equations
    • Dai W. Absolute stable explicit and semi-explicit schemes for Schrödinger equations. Math. Numer. Sin. 11 (1989) 128-131
    • (1989) Math. Numer. Sin. , vol.11 , pp. 128-131
    • Dai, W.1
  • 41
    • 28244501835 scopus 로고    scopus 로고
    • Higher accurate finite difference method for coupled nonlinear Schrödinger equation
    • Ismail M.S., and Alamri S.Z. Higher accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81 3 (2004) 333-351
    • (2004) Int. J. Comput. Math. , vol.81 , Issue.3 , pp. 333-351
    • Ismail, M.S.1    Alamri, S.Z.2
  • 42
    • 33847107061 scopus 로고    scopus 로고
    • A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation
    • Ismail M.S., and Taha T.R. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simulation 74 (2007) 302-311
    • (2007) Math. Comput. Simulation , vol.74 , pp. 302-311
    • Ismail, M.S.1    Taha, T.R.2
  • 43
    • 44349188784 scopus 로고    scopus 로고
    • Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method
    • Ismail M.S. Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method. Math. Comput. Simulation 78 (2008) 532-547
    • (2008) Math. Comput. Simulation , vol.78 , pp. 532-547
    • Ismail, M.S.1
  • 44
    • 0347708733 scopus 로고    scopus 로고
    • Solving the generalized nonlinear Schrodinger equation via quartic spline, approximations
    • Sheng Q., Khaliq A.Q.M., and Al-Said E. Solving the generalized nonlinear Schrodinger equation via quartic spline, approximations. J. Comput. Phys. 166 (2001) 400-417
    • (2001) J. Comput. Phys. , vol.166 , pp. 400-417
    • Sheng, Q.1    Khaliq, A.Q.M.2    Al-Said, E.3
  • 45
    • 4344660059 scopus 로고    scopus 로고
    • Numerical study of the soliton waves of the coupled nonlinear Schrodinger system
    • Sun J.Q., Gu X.Y., and Ma Z.Q. Numerical study of the soliton waves of the coupled nonlinear Schrodinger system. Physica D 196 (2004) 311-328
    • (2004) Physica D , vol.196 , pp. 311-328
    • Sun, J.Q.1    Gu, X.Y.2    Ma, Z.Q.3
  • 46
    • 0142216144 scopus 로고    scopus 로고
    • Multi-symplectic methods for the coupled 1D nonlinear Schrodinger system
    • Sun J.Q., and Qin M.Z. Multi-symplectic methods for the coupled 1D nonlinear Schrodinger system. Comput. Phys. Commun. 155 (2003) 221-235
    • (2003) Comput. Phys. Commun. , vol.155 , pp. 221-235
    • Sun, J.Q.1    Qin, M.Z.2
  • 47
    • 0010295721 scopus 로고
    • Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme
    • Zhang F., Perez-Garacia V.M., and Vazques L. Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. Appl. Math. Comput. 71 (1995) 164-177
    • (1995) Appl. Math. Comput. , vol.71 , pp. 164-177
    • Zhang, F.1    Perez-Garacia, V.M.2    Vazques, L.3
  • 48
    • 18144399959 scopus 로고    scopus 로고
    • Local spectral time splitting method for first- and second-order partial differential equations
    • Yu S., Zhao S., and Wei G.W. Local spectral time splitting method for first- and second-order partial differential equations. J. Comput. Phys. 206 (2005) 727-780
    • (2005) J. Comput. Phys. , vol.206 , pp. 727-780
    • Yu, S.1    Zhao, S.2    Wei, G.W.3
  • 49
    • 0034676955 scopus 로고    scopus 로고
    • Splitting methods for the time-dependent Schrödinger equation
    • Blanes S., and Moan P.C. Splitting methods for the time-dependent Schrödinger equation. Phys. Lett. A 265 (2000) 35-42
    • (2000) Phys. Lett. A , vol.265 , pp. 35-42
    • Blanes, S.1    Moan, P.C.2
  • 50
    • 0041184489 scopus 로고    scopus 로고
    • Nth-order operator splitting schemes and nonreversible systems
    • Goldman D., and Kaper T.J. Nth-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33 (1996) 349-367
    • (1996) SIAM J. Numer. Anal. , vol.33 , pp. 349-367
    • Goldman, D.1    Kaper, T.J.2
  • 51
    • 9144220381 scopus 로고
    • Compact finite difference schemes with spectral-like resolution
    • Lele S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1992) 16-42
    • (1992) J. Comput. Phys. , vol.103 , pp. 16-42
    • Lele, S.K.1
  • 52
    • 50849102362 scopus 로고    scopus 로고
    • High order compact solution of the one-space-dimensional linear hyperbolic equation
    • Mohebbi A., and Dehghan M. High order compact solution of the one-space-dimensional linear hyperbolic equation. Numer. Methods Partial Differential Equations 24 (2008) 1222-1235
    • (2008) Numer. Methods Partial Differential Equations , vol.24 , pp. 1222-1235
    • Mohebbi, A.1    Dehghan, M.2
  • 53
    • 0031570234 scopus 로고    scopus 로고
    • Analysis of a fourth-order compact scheme for convection-diffusion equation
    • Yavneh I. Analysis of a fourth-order compact scheme for convection-diffusion equation. J. Comput. Phys. 113 (1997) 361-373
    • (1997) J. Comput. Phys. , vol.113 , pp. 361-373
    • Yavneh, I.1
  • 54
    • 0001005075 scopus 로고
    • Construction of higher order symplectic integrators
    • Yoshida H. Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262-268
    • (1990) Phys. Lett. A , vol.150 , pp. 262-268
    • Yoshida, H.1
  • 55
    • 0001855416 scopus 로고    scopus 로고
    • On convergence of iterative methods with a fourth-order compact scheme
    • Zhang J. On convergence of iterative methods with a fourth-order compact scheme. Appl. Math. Lett. 10 (1997) 49-55
    • (1997) Appl. Math. Lett. , vol.10 , pp. 49-55
    • Zhang, J.1
  • 58
    • 0034319701 scopus 로고    scopus 로고
    • Novel soliton solutions of the nonlinear Schrödinger equation model
    • Serkin V.N., and Hasegawa A. Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85 (2000) 4502-4505
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 4502-4505
    • Serkin, V.N.1    Hasegawa, A.2
  • 59
    • 0003071909 scopus 로고    scopus 로고
    • Alternating direction implicit methods for two-dimensional diffusion with a nonlocal boundary condition
    • Dehghan M. Alternating direction implicit methods for two-dimensional diffusion with a nonlocal boundary condition. Int. J. Comput. Math. 72 (1999) 349-366
    • (1999) Int. J. Comput. Math. , vol.72 , pp. 349-366
    • Dehghan, M.1
  • 60
    • 0036467361 scopus 로고    scopus 로고
    • Fourth-order techniques for identifying a control parameter in the parabolic equations
    • Dehghan M. Fourth-order techniques for identifying a control parameter in the parabolic equations. Internat. J. Engrg. Sci. 40 (2002) 433-447
    • (2002) Internat. J. Engrg. Sci. , vol.40 , pp. 433-447
    • Dehghan, M.1
  • 61
    • 0036605736 scopus 로고    scopus 로고
    • A new ADI technique for two-dimensional parabolic equation with an integral condition
    • Dehghan M. A new ADI technique for two-dimensional parabolic equation with an integral condition. Comput. Math. Appl. 43 (2002) 1477-1488
    • (2002) Comput. Math. Appl. , vol.43 , pp. 1477-1488
    • Dehghan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.