-
3
-
-
5644226324
-
Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions
-
Antoine X., Besse C., and Mouysett V. Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions. Math. Comput. 73 (2004) 1779-1799
-
(2004)
Math. Comput.
, vol.73
, pp. 1779-1799
-
-
Antoine, X.1
Besse, C.2
Mouysett, V.3
-
4
-
-
0031632570
-
Numerically absorbing boundary conditions for quantum evolution equations
-
Arnold A. Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design 6 (1998) 313-319
-
(1998)
VLSI Design
, vol.6
, pp. 313-319
-
-
Arnold, A.1
-
6
-
-
0000538578
-
A review of dispersive limits of (non) linear Schrödinger type equations
-
Gasser I., Lin C.-K., and Markowich P.A. A review of dispersive limits of (non) linear Schrödinger type equations. Taiwanese J. Math. 4 4 (2000) 501-529
-
(2000)
Taiwanese J. Math.
, vol.4
, Issue.4
, pp. 501-529
-
-
Gasser, I.1
Lin, C.-K.2
Markowich, P.A.3
-
7
-
-
0042936309
-
Solution of the Schrödinger equation in two and three dimensions
-
Hajj F.Y. Solution of the Schrödinger equation in two and three dimensions. J. Phys. B At. Mol. Phys. 18 (1985) 1-11
-
(1985)
J. Phys. B At. Mol. Phys.
, vol.18
, pp. 1-11
-
-
Hajj, F.Y.1
-
8
-
-
0026834954
-
The finite-difference vector beam propagation method
-
Huang W., Xu C., Chu S.T., and Chaudhuri S.K. The finite-difference vector beam propagation method. J. Lightwave Technol. 10 3 (1992) 295-304
-
(1992)
J. Lightwave Technol.
, vol.10
, Issue.3
, pp. 295-304
-
-
Huang, W.1
Xu, C.2
Chu, S.T.3
Chaudhuri, S.K.4
-
9
-
-
0031237961
-
Operations on oscillatory functions
-
Ixaru L.Gr. Operations on oscillatory functions. Comput. Phys. Commun. 105 (1997) 1-9
-
(1997)
Comput. Phys. Commun.
, vol.105
, pp. 1-9
-
-
Ixaru, L.Gr.1
-
10
-
-
0037197866
-
A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients
-
Kalita J.C., Dalal D.C., and Dass A.K. A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients. Int. J. Numer. Meth. Fluids 38 (2002) 1111-1131
-
(2002)
Int. J. Numer. Meth. Fluids
, vol.38
, pp. 1111-1131
-
-
Kalita, J.C.1
Dalal, D.C.2
Dass, A.K.3
-
12
-
-
0029359144
-
Application of the parabolic wave equation to X-ray diffraction optics
-
Kopylov Y.V., Popov A.V., and Vinogradov A.V. Application of the parabolic wave equation to X-ray diffraction optics. Optics Commun. 118 (1995) 619-636
-
(1995)
Optics Commun.
, vol.118
, pp. 619-636
-
-
Kopylov, Y.V.1
Popov, A.V.2
Vinogradov, A.V.3
-
13
-
-
33746830553
-
-
M. L'evy, Parabolic equation methods for electromagnetic wave propagation, IEE, 2000.MR 2003b:78001.
-
-
-
-
14
-
-
0037909972
-
Self-consistent hydrodynamical model for HeII near absolute zero in the frame work of stochastic mechanics
-
Loffredo M.I., and Morato L.M. Self-consistent hydrodynamical model for HeII near absolute zero in the frame work of stochastic mechanics. Phys. Rev. B 35 (1987) 1742-1747
-
(1987)
Phys. Rev. B
, vol.35
, pp. 1742-1747
-
-
Loffredo, M.I.1
Morato, L.M.2
-
15
-
-
21344476837
-
On the creation of quantized vortex lines in rotating HeII
-
Loffredo M.I., and Morato L.M. On the creation of quantized vortex lines in rotating HeII. Nuovo Cimento B(II) 108 (1993) 205-215
-
(1993)
Nuovo Cimento B(II)
, vol.108
, pp. 205-215
-
-
Loffredo, M.I.1
Morato, L.M.2
-
17
-
-
0027855298
-
Implicit two-level finite-difference methods for the two-dimensional diffusion equation
-
Noye B.J., and Hayman K.J. Implicit two-level finite-difference methods for the two-dimensional diffusion equation. Int. J. Comput. Math. 48 (1993) 219-228
-
(1993)
Int. J. Comput. Math.
, vol.48
, pp. 219-228
-
-
Noye, B.J.1
Hayman, K.J.2
-
19
-
-
0036844275
-
On the finite-difference schemes for the numerical solution of two dimensional Schrödinger equation
-
Subasi M. On the finite-difference schemes for the numerical solution of two dimensional Schrödinger equation. Numer. Methods Partial Differential Equations 18 (2002) 752-758
-
(2002)
Numer. Methods Partial Differential Equations
, vol.18
, pp. 752-758
-
-
Subasi, M.1
-
20
-
-
33746860859
-
-
F.D. Tappert, The parabolic approximation method, in: J.B. Keller, J.S. Papadakis (Eds.), Wave Propagation and Underwater Acoustics, Lecture Notes in Physics, vol. 70, Springer, Berlin, 1977, pp. 224-287.
-
-
-
|