메뉴 건너뛰기




Volumn 110, Issue , 2013, Pages 29-34

Feature selection techniques with class separability for multivariate time series

Author keywords

Class separability; Feature selection; Multivariate time series; Mutual information

Indexed keywords

CLASS SEPARABILITY; CLASS-SEPARABILITY CRITERION; EEG DATUM; FEA-TURE SELECTIONS; FEATURE SELECTION ALGORITHM; FILTER METHOD; MULTIVARIATE TIME SERIES; MUTUAL INFORMATIONS;

EID: 84876143470     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.12.006     Document Type: Article
Times cited : (51)

References (38)
  • 1
    • 84856505051 scopus 로고    scopus 로고
    • Feature selection based on class-dependent densities for high-dimensional binary data
    • Javed K., Babri H., Saeed M. Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans. Knowl. Data Eng. 2012, 24:465-477.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , pp. 465-477
    • Javed, K.1    Babri, H.2    Saeed, M.3
  • 2
    • 78649957565 scopus 로고    scopus 로고
    • A new wrapper feature selection approach using neural network
    • Monirul Kabir M., Monirul Islam M., Murase K. A new wrapper feature selection approach using neural network. Neurocomputing 2010, 73:3273-3283.
    • (2010) Neurocomputing , vol.73 , pp. 3273-3283
    • Monirul Kabir, M.1    Monirul Islam, M.2    Murase, K.3
  • 3
    • 80052941913 scopus 로고    scopus 로고
    • A new local search based hybrid genetic algorithm for feature selection
    • Kabir M.M., Shahjahan M., Murase K. A new local search based hybrid genetic algorithm for feature selection. Neurocomputing 2011, 74:2914-2928.
    • (2011) Neurocomputing , vol.74 , pp. 2914-2928
    • Kabir, M.M.1    Shahjahan, M.2    Murase, K.3
  • 4
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 5
    • 76749129275 scopus 로고    scopus 로고
    • Supervised feature selection by clustering using conditional mutual information-based distances
    • Martínez Sotoca J., Pla F. Supervised feature selection by clustering using conditional mutual information-based distances. Patt. Recog. 2010, 43:2068-2081.
    • (2010) Patt. Recog. , vol.43 , pp. 2068-2081
    • Martínez Sotoca, J.1    Pla, F.2
  • 6
    • 44649105615 scopus 로고    scopus 로고
    • Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm
    • Hong Y., Kwong S., Chang Y., Ren Q. Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm. Patt. Recog. 2008, 41:2742-2756.
    • (2008) Patt. Recog. , vol.41 , pp. 2742-2756
    • Hong, Y.1    Kwong, S.2    Chang, Y.3    Ren, Q.4
  • 7
    • 84861590173 scopus 로고    scopus 로고
    • An unsupervised approach to feature discretization and selection
    • Ferreira A.J., Figueiredo M.A.T. An unsupervised approach to feature discretization and selection. Patt. Recog. 2012, 45:3048-3060.
    • (2012) Patt. Recog. , vol.45 , pp. 3048-3060
    • Ferreira, A.J.1    Figueiredo, M.A.T.2
  • 8
    • 78149350512 scopus 로고    scopus 로고
    • Applicability of feature selection on multivariate time series data for robotic discovery
    • in: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE '10) pp. V2-592-V592-597.
    • S. Cheema, T. Henne, U. Koeckemann, E. Prassler, Applicability of feature selection on multivariate time series data for robotic discovery, in: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE '10) 2010, pp. V2-592-V592-597.
    • (2010)
    • Cheema, S.1    Henne, T.2    Koeckemann, U.3    Prassler, E.4
  • 9
    • 83655192093 scopus 로고    scopus 로고
    • Data-core-based fuzzy min-max neural network for pattern classification
    • Zhang H., Liu J., Ma D., Wang Z. Data-core-based fuzzy min-max neural network for pattern classification. IEEE Trans. Neural Networks 2011, 22:2339-2352.
    • (2011) IEEE Trans. Neural Networks , vol.22 , pp. 2339-2352
    • Zhang, H.1    Liu, J.2    Ma, D.3    Wang, Z.4
  • 10
    • 78649672225 scopus 로고    scopus 로고
    • A review on time series data mining
    • Fu T. A review on time series data mining. Eng. Appl. Artif. Intell. 2011, 24:164-181.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 164-181
    • Fu, T.1
  • 11
    • 83755174013 scopus 로고    scopus 로고
    • Distribution based data filtering for financial time series forecasting
    • Ristanoski G., Bailey J. Distribution based data filtering for financial time series forecasting. AI 2011: Adv. Artif. Intell. 2011, 122-131.
    • (2011) AI 2011: Adv. Artif. Intell. , pp. 122-131
    • Ristanoski, G.1    Bailey, J.2
  • 13
    • 84856018659 scopus 로고    scopus 로고
    • AIMS: an immersidata management system
    • in: VLDB First Biennial Conference on Innovative Data Systems Research (CIDR '03)
    • C. Shahabi, AIMS: an immersidata management system, in: VLDB First Biennial Conference on Innovative Data Systems Research (CIDR '03), 2003.
    • (2003)
    • Shahabi, C.1
  • 14
    • 21144442613 scopus 로고    scopus 로고
    • Performance analysis of time-distance gait parameters under different speeds
    • in: 4th International Conference on Audio- and Video-based Biometric Person Authentication (AVBPA '03) Springer
    • R. Tanawongsuwan, A. Bobick, Performance analysis of time-distance gait parameters under different speeds, in: 4th International Conference on Audio- and Video-based Biometric Person Authentication (AVBPA '03) Springer, 2003, pp. 715-724.
    • (2003) , pp. 715-724
    • Tanawongsuwan, R.1    Bobick, A.2
  • 16
    • 84862006945 scopus 로고    scopus 로고
    • Copula-based semiparametric models for multivariate time series
    • Rémillard B., Papageorgiou N., Soustra F. Copula-based semiparametric models for multivariate time series. J. Multivariate Anal. 2012, 110:30-42.
    • (2012) J. Multivariate Anal. , vol.110 , pp. 30-42
    • Rémillard, B.1    Papageorgiou, N.2    Soustra, F.3
  • 17
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46:389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 19
    • 70449526103 scopus 로고    scopus 로고
    • A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams
    • Wöllmer M., Al-Hames M., Eyben F., Schuller B., Rigoll G. A multidimensional dynamic time warping algorithm for efficient multimodal fusion of asynchronous data streams. Neurocomputing 2009, 73:366-380.
    • (2009) Neurocomputing , vol.73 , pp. 366-380
    • Wöllmer, M.1    Al-Hames, M.2    Eyben, F.3    Schuller, B.4    Rigoll, G.5
  • 21
    • 85008015696 scopus 로고    scopus 로고
    • Generalized dimension-reduction framework for recent-biased time series analysis
    • Zhao Y., Zhang S. Generalized dimension-reduction framework for recent-biased time series analysis. IEEE Trans. Knowl. Data Eng. 2006, 18:231-244.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , pp. 231-244
    • Zhao, Y.1    Zhang, S.2
  • 26
    • 33645471785 scopus 로고    scopus 로고
    • Feature subset selection and feature ranking for multivariate time series
    • Yoon H., Yang K., Shahabi C. Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Knowl. Data Eng. 2005, 17:1186-1198.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 1186-1198
    • Yoon, H.1    Yang, K.2    Shahabi, C.3
  • 27
    • 84950659640 scopus 로고
    • Between-groups comparison of principal components
    • Krzanowski W. Between-groups comparison of principal components. J. Am. Stat. Assoc. 1979, 74:703-707.
    • (1979) J. Am. Stat. Assoc. , vol.74 , pp. 703-707
    • Krzanowski, W.1
  • 28
    • 77951153429 scopus 로고    scopus 로고
    • A supervised feature subset selection technique for multivariate time series
    • in: Workshop Feature Selection for Data Mining: Interfacing Machine Learning with Statistics
    • K. Yang, H. Yoon, C. Shahabi, A supervised feature subset selection technique for multivariate time series, in: Workshop Feature Selection for Data Mining: Interfacing Machine Learning with Statistics, 2005, pp. 92-101.
    • (2005) , pp. 92-101
    • Yang, K.1    Yoon, H.2    Shahabi, C.3
  • 30
    • 70350220602 scopus 로고    scopus 로고
    • Feature down-selection in Brain-Computer Interfaces
    • in: 4th International IEEE EMBS Conference on Neural Engineering IEEE
    • N. Dias, L. Jacinto, P. Mendes, J. Correia, Feature down-selection in Brain-Computer Interfaces, in: 4th International IEEE EMBS Conference on Neural Engineering IEEE, 2009, pp. 323-326.
    • (2009) , pp. 323-326
    • Dias, N.1    Jacinto, L.2    Mendes, P.3    Correia, J.4
  • 31
    • 84860237900 scopus 로고    scopus 로고
    • Feature selection with missing data using mutual information estimators
    • Doquire G., Verleysen M. Feature selection with missing data using mutual information estimators. Neurocomputing 2012, 90:3-11.
    • (2012) Neurocomputing , vol.90 , pp. 3-11
    • Doquire, G.1    Verleysen, M.2
  • 33
    • 48049087439 scopus 로고    scopus 로고
    • Feature selection with kernel class separability
    • Wang L. Feature selection with kernel class separability. IEEE Trans. Patt. Anal. Mach. Intell. 2008, 30:1534-1546.
    • (2008) IEEE Trans. Patt. Anal. Mach. Intell. , vol.30 , pp. 1534-1546
    • Wang, L.1
  • 35
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
    • Brown G., Pocock A., Zhao M.J., Luján M. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J. Mach. Learn. Res. 2012, 13:26-66.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 26-66
    • Brown, G.1    Pocock, A.2    Zhao, M.J.3    Luján, M.4
  • 36
    • 84863387880 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases
    • Irvine, CA: University of California
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases. Irvine, CA: University of California, http://www.ics.uci.edu/(mlearn/MLRepository.html.
    • Blake, C.L.1    Merz, C.J.2
  • 37
    • 51549099383 scopus 로고    scopus 로고
    • Classification of EEG signals correlated with alcohol abusers
    • in: 9th International Symposium Signal Processing and its Applications (ISSPA '07)
    • A. Yazdani, S. Kamaledin Setarehdan, Classification of EEG signals correlated with alcohol abusers, in: 9th International Symposium Signal Processing and its Applications (ISSPA '07), 2007, pp. 1-4.
    • (2007) , pp. 1-4
    • Yazdani, A.1    Kamaledin Setarehdan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.