메뉴 건너뛰기




Volumn 10, Issue 11, 2011, Pages 1384-1395

Diversity in requirement of genetic and epigenetic factors for centromere function in fungi

Author keywords

[No Author keywords available]

Indexed keywords

AUTOANTIGEN; CENTROMERE PROTEIN A; FUNGAL DNA; FUNGAL PROTEIN; HISTONE; NONHISTONE PROTEIN;

EID: 80055121651     PISSN: 15359778     EISSN: None     Source Type: Journal    
DOI: 10.1128/EC.05165-11     Document Type: Article
Times cited : (29)

References (141)
  • 1
    • 0029678321 scopus 로고    scopus 로고
    • Extreme heterogeneity of minor satellite repeat arrays in inbred strains of mice
    • Aker, M., and H. Huang. 1996. Extreme heterogeneity of minor satellite repeat arrays in inbred strains of mice. Mamm. Genome 7:62-64.
    • (1996) Mamm. Genome , vol.7 , pp. 62-64
    • Aker, M.1    Huang, H.2
  • 2
    • 0035574803 scopus 로고    scopus 로고
    • Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans
    • Aleksenko, A., M. L. Nielsen, and A. J. Clutterbuck. 2001. Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans. Fungal Genet. Biol. 32:45-54.
    • (2001) Fungal Genet. Biol , vol.32 , pp. 45-54
    • Aleksenko, A.1    Nielsen, M.L.2    Clutterbuck, A.J.3
  • 3
    • 56549108407 scopus 로고    scopus 로고
    • Epigenetic regulation of centromeric chromatin: Old dogs, new tricks?
    • Allshire, R. C., and G. H. Karpen. 2008. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9:923-937.
    • (2008) Nat. Rev. Genet , vol.9 , pp. 923-937
    • Allshire, R.C.1    Karpen, G.H.2
  • 4
    • 0028873187 scopus 로고
    • Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation
    • Allshire, R. C., E. R. Nimmo, K. Ekwall, J. P. Javerzat, and G. Cranston. 1995. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9:218-233.
    • (1995) Genes Dev , vol.9 , pp. 218-233
    • Allshire, R.C.1    Nimmo, E.R.2    Ekwall, K.3    Javerzat, J.P.4    Cranston, G.5
  • 5
    • 35848960342 scopus 로고    scopus 로고
    • Domain architectures of the Scm3p protein provide insights into centromere function and evolution
    • Aravind, L., L. M. Iyer, and C. Wu. 2007. Domain architectures of the Scm3p protein provide insights into centromere function and evolution. Cell Cycle 6:2511-2515.
    • (2007) Cell Cycle , vol.6 , pp. 2511-2515
    • Aravind, L.1    Iyer, L.M.2    Wu, C.3
  • 6
    • 0025837183 scopus 로고
    • The nucleosomal core histone octamer at 3.1 A resolution: A tripartite protein assembly and a left-handed superhelix
    • Arents, G., R. W. Burlingame, B. C. Wang, W. E. Love, and E. N. Moud-rianakis. 1991. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. U. S. A. 88:10148-10152.
    • (1991) Proc. Natl. Acad. Sci. U. S. A , vol.88 , pp. 10148-10152
    • Arents, G.1    Burlingame, R.W.2    Wang, B.C.3    Love, W.E.4    Moud-Rianakis, E.N.5
  • 7
    • 33751334580 scopus 로고    scopus 로고
    • Phylogenetic analysis of fungal centromere H3 proteins
    • Baker, R. E., and K. Rogers. 2006. Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174:1481-1492.
    • (2006) Genetics , vol.174 , pp. 1481-1492
    • Baker, R.E.1    Rogers, K.2
  • 8
    • 0035282458 scopus 로고    scopus 로고
    • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    • Bannister, A. J., et al. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120-124.
    • (2001) Nature , vol.410 , pp. 120-124
    • Bannister, A.J.1
  • 10
    • 0028065035 scopus 로고
    • The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizo-saccharomyces pombe centromere
    • Baum, M., V. K Ngan, and L. Clarke. 1994. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizo-saccharomyces pombe centromere. Mol. Biol. Cell 5:747-761.
    • (1994) Mol. Biol. Cell , vol.5 , pp. 747-761
    • Baum, M.1    Ngan, V.K.2    Clarke, L.3
  • 11
    • 33749505847 scopus 로고    scopus 로고
    • Formation of functional centromeric chromatin is specified epigenetically in Candida albicans
    • Baum, M., K Sanyal, P. K Mishra, N. Thaler, and J. Carbon. 2006. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc. Natl. Acad. Sci. U. S. A. 103:14877-14882.
    • (2006) Proc. Natl. Acad. Sci. U. S. A , vol.103 , pp. 14877-14882
    • Baum, M.1    Sanyal, K.2    Mishra, P.K.3    Thaler, N.4    Carbon, J.5
  • 12
    • 44449161646 scopus 로고    scopus 로고
    • Rapid evolution of yeast centromeres in the absence of drive
    • Bensasson, D., M. Zarowiecki, A. Burt, and V. Koufopanou. 2008. Rapid evolution of yeast centromeres in the absence of drive. Genetics 178:2161-2167.
    • (2008) Genetics , vol.178 , pp. 2161-2167
    • Bensasson, D.1    Zarowiecki, M.2    Burt, A.3    Koufopanou, V.4
  • 13
    • 0035930750 scopus 로고    scopus 로고
    • Requirement of heterochromatin for cohesion at centromeres
    • Bernard, P., et al. 2001. Requirement of heterochromatin for cohesion at centromeres. Science 294:2539-2542.
    • (2001) Science , vol.294 , pp. 2539-2542
    • Bernard, P.1
  • 14
    • 0035905766 scopus 로고    scopus 로고
    • Role for a bidentate ribonuclease in the initiation step of RNA interference
    • Bernstein, E., A. A. Caudy, S. M. Hammond, and G. J. Hannon. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363-366.
    • (2001) Nature , vol.409 , pp. 363-366
    • Bernstein, E.1    Caudy, A.A.2    Hammond, S.M.3    Hannon, G.J.4
  • 15
    • 0020324991 scopus 로고
    • Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichro-mosomes
    • Bloom, K. S., and J. Carbon. 1982. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichro-mosomes. Cell 29:305-317.
    • (1982) Cell , vol.29 , pp. 305-317
    • Bloom, K.S.1    Carbon, J.2
  • 16
    • 62849087098 scopus 로고    scopus 로고
    • The 'kinetochore maintenance loop'- the mark of regulation?
    • Brown, W. R. A., and Z.-Y. Xu. 2009. The 'kinetochore maintenance loop'- the mark of regulation? BioEssays 31:228-236.
    • (2009) BioEssays , vol.31 , pp. 228-236
    • Brown, W.R.A.1    Xu, Z.-Y.2
  • 17
    • 79957461486 scopus 로고    scopus 로고
    • The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules
    • Burrack, L., S. Shelly, E. Applen, and J. Berman. 2011. The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules. Curr. Biol. 21:889-896.
    • (2011) Curr. Biol , vol.21 , pp. 889-896
    • Burrack, L.1    Shelly, S.2    Applen, E.3    Berman, J.4
  • 18
    • 23044498502 scopus 로고    scopus 로고
    • Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome
    • Cam, H. P., et al. 2005. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37:809-819.
    • (2005) Nat. Genet , vol.37 , pp. 809-819
    • Cam, H.P.1
  • 19
    • 34250316190 scopus 로고    scopus 로고
    • Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore
    • Camahort, R., et al. 2007. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26:853-865.
    • (2007) Mol. Cell , vol.26 , pp. 853-865
    • Camahort, R.1
  • 20
    • 70349168454 scopus 로고    scopus 로고
    • Cse4 is part of an octameric nucleosome in budding yeast
    • Camahort, R., et al. 2009. Cse4 is part of an octameric nucleosome in budding yeast. Mol. Cell 35:794-805.
    • (2009) Mol. Cell , vol.35 , pp. 794-805
    • Camahort, R.1
  • 21
    • 0031839901 scopus 로고    scopus 로고
    • Structure of the chromosome VII centromere region in Neurospora crassa: Degenerate trans-posons and simple repeats
    • Cambareri, E. B., R. Aisner, and J. Carbon. 1998. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate trans-posons and simple repeats. Mol. Cell. Biol. 18:5465-5477.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 5465-5477
    • Cambareri, E.B.1    Aisner, R.2    Carbon, J.3
  • 22
    • 0036828639 scopus 로고    scopus 로고
    • The Argonaute family: Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis
    • Carmell, M. A., Z. Xuan, M. Q. Zhang, and G. J. Hannon. 2002. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16:2733-2742.
    • (2002) Genes Dev , vol.16 , pp. 2733-2742
    • Carmell, M.A.1    Xuan, Z.2    Zhang, M.Q.3    Hannon, G.J.4
  • 23
    • 34547639766 scopus 로고    scopus 로고
    • Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4
    • Castillo, A. G., et al. 2007. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLoS Genet. 3:e121.
    • (2007) PLoS Genet , vol.3
    • Castillo, A.G.1
  • 24
    • 0028052990 scopus 로고
    • Cloning and characterization of centromeric DNA from Neurospora crassa
    • Centola, M., and J. Carbon. 1994. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol. Cell. Biol. 14:1510-1519.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 1510-1519
    • Centola, M.1    Carbon, J.2
  • 25
    • 0010766518 scopus 로고
    • Analysis of centromeric DNA in the fission yeast Schizosacchawmyces pombe
    • Clarke, L., H. Amstutz, B. Fishel, and J. Carbon. 1986. Analysis of centromeric DNA in the fission yeast Schizosacchawmyces pombe. Proc. Natl. Acad. Sci. U. S. A. 83:8253-8257.
    • (1986) Proc. Natl. Acad. Sci. U. S. A , vol.83 , pp. 8253-8257
    • Clarke, L.1    Amstutz, H.2    Fishel, B.3    Carbon, J.4
  • 26
    • 0019162013 scopus 로고
    • Isolation of a yeast centromere and construction of functional small circular chromosomes
    • Clarke, L., and J. Carbon. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504-509.
    • (1980) Nature , vol.287 , pp. 504-509
    • Clarke, L.1    Carbon, J.2
  • 27
    • 0018869457 scopus 로고
    • Isolation of the centromere-linked CDC10 gene by complementation in yeast
    • Clarke, L., and J. Carbon. 1980. Isolation of the centromere-linked CDC10 gene by complementation in yeast. Proc. Natl. Acad. Sci. U. S. A. 77:2173-2177.
    • (1980) Proc. Natl. Acad. Sci. U. S. A , vol.77 , pp. 2173-2177
    • Clarke, L.1    Carbon, J.2
  • 28
    • 0020627503 scopus 로고
    • Genomic substitutions of centromeres in Saccharomyces cerevisiae
    • Clarke, L., and J. Carbon. 1983. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305:23-28.
    • (1983) Nature , vol.305 , pp. 23-28
    • Clarke, L.1    Carbon, J.2
  • 29
    • 33644783716 scopus 로고    scopus 로고
    • After the duplication: Gene loss and adaptation in Saccharomyces genomes
    • Cliften, P. F., R. S. Fulton, R. K. Wilson, and M. Johnston. 2006. After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172:863-872.
    • (2006) Genetics , vol.172 , pp. 863-872
    • Cliften, P.F.1    Fulton, R.S.2    Wilson, R.K.3    Johnston, M.4
  • 30
    • 7944224836 scopus 로고    scopus 로고
    • Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant
    • Collins, K. A., S. Furuyama, and S. Biggins. 2004. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14:1968-1972.
    • (2004) Curr. Biol , vol.14 , pp. 1968-1972
    • Collins, K.A.1    Furuyama, S.2    Biggins, S.3
  • 31
    • 34250168342 scopus 로고    scopus 로고
    • CENP-A-containing nucleosomes: Easier disassembly versus exclusive centromeric localization
    • Conde e Silva, N., et al. 2007. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370:555-573.
    • (2007) J. Mol. Biol , vol.370 , pp. 555-573
    • Conde, S.N.1
  • 32
    • 0033601285 scopus 로고    scopus 로고
    • Genetic definition and sequence analysis of Arabidopsis centromeres
    • Copenhaver, G. P., et al. 1999. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468-2474.
    • (1999) Science , vol.286 , pp. 2468-2474
    • Copenhaver, G.P.1
  • 33
    • 0023433803 scopus 로고
    • Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae
    • Cumberledge, S., and J. Carbon. 1987. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203-212.
    • (1987) Genetics , vol.117 , pp. 203-212
    • Cumberledge, S.1    Carbon, J.2
  • 34
    • 11144355642 scopus 로고    scopus 로고
    • The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome
    • Dietrich, F. S., et al. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304-307.
    • (2004) Science , vol.304 , pp. 304-307
    • Dietrich, F.S.1
  • 35
    • 3042720475 scopus 로고    scopus 로고
    • Genome evolution in yeasts
    • Dujon, B., et al. 2004. Genome evolution in yeasts. Nature 430:35-44.
    • (2004) Nature , vol.430 , pp. 35-44
    • Dujon, B.1
  • 36
    • 0021989578 scopus 로고
    • Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma
    • Earnshaw, W. C., and N. Rothfield. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313-321.
    • (1985) Chromosoma , vol.91 , pp. 313-321
    • Earnshaw, W.C.1    Rothfield, N.2
  • 37
    • 0029859275 scopus 로고    scopus 로고
    • Mutations in the fission yeast silencing factors clr4 + and rik1 + disrupt the localisation of the chromo domain protein Swi6p and impair centromere function
    • Ekwall, K., et al. 1996. Mutations in the fission yeast silencing factors clr4 + and rik1 + disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci. 109:2637-2648.
    • (1996) J. Cell Sci , vol.109 , pp. 2637-2648
    • Ekwall, K.1
  • 38
    • 74049138689 scopus 로고    scopus 로고
    • Nuclear retention of fission yeast Dicer is a prerequisite for RNAi-mediated heterochromatin assembly
    • Emmerth, S., et al. 2010. Nuclear retention of fission yeast Dicer is a prerequisite for RNAi-mediated heterochromatin assembly. Dev. Cell 18: 102-113.
    • (2010) Dev. Cell , vol.18 , pp. 102-113
    • Emmerth, S.1
  • 39
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
    • Fire, A., et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811.
    • (1998) Nature , vol.391 , pp. 806-811
    • Fire, A.1
  • 40
    • 0023957483 scopus 로고
    • Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosacchawmyces pombe
    • Fishel, B., H. Amstutz, M. Baum, J. Carbon, and L. Clarke. 1988. Structural organization and functional analysis of centromeric DNA in the fission yeast Schizosacchawmyces pombe. Mol. Cell. Biol. 8:754-763.
    • (1988) Mol. Cell. Biol , vol.8 , pp. 754-763
    • Fishel, B.1    Amstutz, H.2    Baum, M.3    Carbon, J.4    Clarke, L.5
  • 41
    • 0020325948 scopus 로고
    • Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs
    • Fitzgerald-Hayes, M., L. Clarke, and J. Carbon. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29: 235-244.
    • (1982) Cell , vol.29 , pp. 235-244
    • Fitzgerald-Hayes, M.1    Clarke, L.2    Carbon, J.3
  • 42
    • 37849021647 scopus 로고    scopus 로고
    • Heterochro-matin and RNAi are required to establish CENP-A chromatin at centromeres
    • Folco, H. D., A. L. Pidoux, T. Urano, and R. C. Allshire. 2008. Heterochro-matin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94-97.
    • (2008) Science , vol.319 , pp. 94-97
    • Folco, H.D.1    Pidoux, A.L.2    Urano, T.3    Allshire, R.C.4
  • 43
    • 0027178449 scopus 로고
    • Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica
    • Fournier, P., et al. 1993. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc. Natl. Acad. Sci. U. S. A. 90:4912-4916.
    • (1993) Proc. Natl. Acad. Sci. U. S. A , vol.90 , pp. 4912-4916
    • Fournier, P.1
  • 44
    • 17444408448 scopus 로고    scopus 로고
    • Conserved locus-specific silencing functions of Schizosacchawmyces pombe sir2+
    • Freeman-Cook, L. L., et al. 2005. Conserved locus-specific silencing functions of Schizosacchawmyces pombe sir2+. Genetics 169:1243-1260.
    • (2005) Genetics , vol.169 , pp. 1243-1260
    • Freeman-Cook, L.L.1
  • 45
    • 3042569778 scopus 로고    scopus 로고
    • DNA methylation is independent of RNA interference in Neurospora
    • Freitag, M., et al. 2004. DNA methylation is independent of RNA interference in Neurospora. Science 304:1939.
    • (2004) Science , vol.304 , pp. 1939
    • Freitag, M.1
  • 46
    • 79955539577 scopus 로고    scopus 로고
    • Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
    • Gascoigne, K., et al. 2011. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410-422.
    • (2011) Cell , vol.145 , pp. 410-422
    • Gascoigne, K.1
  • 47
    • 77952236323 scopus 로고    scopus 로고
    • RNAi-dependent formation of heterochromatin and its diverse functions
    • Grewal, S. I. S. 2010. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20:134-141.
    • (2010) Curr. Opin. Genet. Dev , vol.20 , pp. 134-141
    • Grewal, S.I.S.1
  • 48
    • 76749104253 scopus 로고    scopus 로고
    • Dicer-independent primal RNAs trigger RNAi and heterochromatin formation
    • Halic, M., and D. Moazed. 2010. Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140:504-516.
    • (2010) Cell , vol.140 , pp. 504-516
    • Halic, M.1    Moazed, D.2
  • 49
    • 60849132182 scopus 로고    scopus 로고
    • Localization of gene products using a chromo-somally tagged GFP-fusion library in the fission yeast Schizosaccharomyces pombe
    • Hayashi, A., et al. 2009. Localization of gene products using a chromo-somally tagged GFP-fusion library in the fission yeast Schizosaccharomyces pombe. Genes Cells 14:217-225.
    • (2009) Genes Cells , vol.14 , pp. 217-225
    • Hayashi, A.1
  • 50
    • 0035839066 scopus 로고    scopus 로고
    • The centromere paradox: Stable inheritance with rapidly evolving DNA
    • Henikoff, S., K. Ahmad, and H. S. Malik. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098-1102.
    • (2001) Science , vol.293 , pp. 1098-1102
    • Henikoff, S.1    Ahmad, K.2    Malik, H.S.3
  • 51
    • 15744399172 scopus 로고    scopus 로고
    • Centromeric chromatin: What makes it unique
    • Henikoff, S., and Y. Dalal. 2005. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev. 15:177-184.
    • (2005) Curr. Opin. Genet. Dev , vol.15 , pp. 177-184
    • Henikoff, S.1    Dalal, Y.2
  • 52
    • 0038523788 scopus 로고    scopus 로고
    • Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabi-dopsis species
    • Heslop-Harrison, J. S., A. Brandes, and T. Schwarzacher. 2003. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabi-dopsis species. Chromosome Res. 11:241-253.
    • (2003) Chromosome Res , vol.11 , pp. 241-253
    • Heslop-Harrison, J.S.1    Brandes, A.2    Schwarzacher, T.3
  • 53
    • 0027359229 scopus 로고
    • Chromatin structures of Kluyvewmyces lactis centromeres in K lactis and Saccharomyces cerevisiae
    • Heus, J. J., K. S. Bloom, B. J. M. Zonneveld, H. Y. Steensma, and J. A. Berg. 1993. Chromatin structures of Kluyvewmyces lactis centromeres in K lactis and Saccharomyces cerevisiae. Chromosoma 102:660-667.
    • (1993) Chromosoma , vol.102 , pp. 660-667
    • Heus, J.J.1    Bloom, K.S.2    Zonneveld, B.J.M.3    Steensma, H.Y.4    Berg, J.A.5
  • 54
    • 0027397460 scopus 로고
    • The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae
    • Heus, J. J., Z. B. H. Y. de Steensma, and J. A. van den Berg. 1993. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol. Gen. Genet. 236:355-362.
    • (1993) Mol. Gen. Genet , vol.236 , pp. 355-362
    • Heus, J.J.1    de Steensma, Z.B.H.Y.2    van den Berg, J.A.3
  • 55
    • 0028217924 scopus 로고
    • Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K lactis and Saccharomyces cerevisiae
    • Heus, J. J., Z. B. H. Y. Steensma, and J. A. Van den Berg. 1994. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K lactis and Saccharomyces cerevisiae. Mol. Gen. Genet. 243:325-333.
    • (1994) Mol. Gen. Genet , vol.243 , pp. 325-333
    • Heus, J.J.1    Steensma, Z.B.H.Y.2    van den Berg, J.A.3
  • 56
    • 78149449583 scopus 로고    scopus 로고
    • Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4
    • Hewawasam, G., et al. 2010. Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol. Cell 40:444-454.
    • (2010) Mol. Cell , vol.40 , pp. 444-454
    • Hewawasam, G.1
  • 57
    • 0022133409 scopus 로고
    • Functional selection and analysis of yeast centromeric DNA
    • Hieter, P., et al. 1985. Functional selection and analysis of yeast centromeric DNA. Cell 42:913-921.
    • (1985) Cell , vol.42 , pp. 913-921
    • Hieter, P.1
  • 58
    • 26944450776 scopus 로고    scopus 로고
    • A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochro-matin formation
    • Hong, E.-J., J. Villen, E. L. Gerace, S. P. Gygi, and D. Moazed,. 2005. A cullin E3 ubiquitin ligase complex associates with Rik1 and the Clr4 histone H3-K9 methyltransferase and is required for RNAi-mediated heterochro-matin formation. RNA Biol. 2:106-111.
    • (2005) RNA Biol , vol.2 , pp. 106-111
    • Hong, E.-J.1    Villen, J.2    Gerace, E.L.3    Gygi, S.P.4    Moazed, D.5
  • 59
    • 23044504238 scopus 로고    scopus 로고
    • A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation
    • Horn, P. J., J.-N. Bastie, and C. L. Peterson. 2005. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev. 19:1705-1714.
    • (2005) Genes Dev , vol.19 , pp. 1705-1714
    • Horn, P.J.1    Bastie, J.-N.2    Peterson, C.L.3
  • 60
    • 77955419577 scopus 로고    scopus 로고
    • A tetrad analysis of the basidiomycete fungus Cryptococ-cus neoformans
    • Idnurm, A. 2010. A tetrad analysis of the basidiomycete fungus Cryptococ-cus neoformans. Genetics 185:153-163.
    • (2010) Genetics , vol.185 , pp. 153-163
    • Idnurm, A.1
  • 61
    • 50149103619 scopus 로고    scopus 로고
    • Heterochromatin integrity affects chromosome reorganization after centromere dysfunction
    • Ishii, K., et al. 2008. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088-1091.
    • (2008) Science , vol.321 , pp. 1088-1091
    • Ishii, K.1
  • 62
    • 0031865511 scopus 로고    scopus 로고
    • The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast
    • Ivanova, A. V., M. J. Bonaduce, S. V. Ivanov, and A. J. S. Klar. 1998. The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat. Genet. 19:192-195.
    • (1998) Nat. Genet , vol.19 , pp. 192-195
    • Ivanova, A.V.1    Bonaduce, M.J.2    Ivanov, S.V.3    Klar, A.J.S.4
  • 63
    • 27144554969 scopus 로고    scopus 로고
    • Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble hetero-chromatin
    • Jia, S., R. Kobayashi, and S. I. S. Grewal. 2005. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble hetero-chromatin. Nat. Cell Biol. 7:1007-1013.
    • (2005) Nat. Cell Biol , vol.7 , pp. 1007-1013
    • Jia, S.1    Kobayashi, R.2    Grewal, S.I.S.3
  • 64
    • 67649939154 scopus 로고    scopus 로고
    • Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres
    • Kagansky, A., et al. 2009. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324:1716-1719.
    • (2009) Science , vol.324 , pp. 1716-1719
    • Kagansky, A.1
  • 65
    • 0038349948 scopus 로고    scopus 로고
    • Sequencing and comparison of yeast species to identify genes and regulatory elements
    • Kellis, M., N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241-254.
    • (2003) Nature , vol.423 , pp. 241-254
    • Kellis, M.1    Patterson, N.2    Endrizzi, M.3    Birren, B.4    Lander, E.S.5
  • 66
    • 62149122605 scopus 로고    scopus 로고
    • Neocentromeres form efficiently at multiple possible loci in Candida albicans
    • Ketel, C., et al. 2009. Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet. 5:e1000400.
    • (2009) PLoS Genet , vol.5
    • Ketel, C.1
  • 67
    • 0037314178 scopus 로고    scopus 로고
    • Early-replicating heterochromatin
    • Kim, S.-M., D. D. Dubey, and J. A. Huberman. 2003. Early-replicating heterochromatin. Genes Dev. 17:330-335.
    • (2003) Genes Dev , vol.17 , pp. 330-335
    • Kim, S.-M.1    Dubey, D.D.2    Huberman, J.A.3
  • 68
    • 0026063393 scopus 로고
    • Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere
    • Kipling, D., H. E. Ackford, B. A. Taylor, and H. J. Cooke. 1991. Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11:235-241.
    • (1991) Genomics , vol.11 , pp. 235-241
    • Kipling, D.1    Ackford, H.E.2    Taylor, B.A.3    Cooke, H.J.4
  • 69
    • 0031044294 scopus 로고    scopus 로고
    • Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere
    • Kitada, K., E. Yamaguchi, K. Hamada, and M. Arisawa. 1997. Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere. Curr. Genet. 31:122-127.
    • (1997) Curr. Genet , vol.31 , pp. 122-127
    • Kitada, K.1    Yamaguchi, E.2    Hamada, K.3    Arisawa, M.4
  • 70
    • 77957337127 scopus 로고    scopus 로고
    • Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase
    • Koren, A., et al. 2010. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet. 6:e1001068.
    • (2010) PLoS Genet , vol.6
    • Koren, A.1
  • 71
    • 62749132272 scopus 로고    scopus 로고
    • Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing
    • Lefrancois, P., et al., 2009. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37.
    • (2009) BMC Genomics , vol.10 , pp. 37
    • Lefrancois, P.1
  • 72
    • 79957844677 scopus 로고    scopus 로고
    • Common ground: Small RNA programming and chromatin modifications
    • Lejeune, E., and R. C. Allshire. 2011. Common ground: small RNA programming and chromatin modifications. Curr. Opin. Cell Biol. 23:258-265.
    • (2011) Curr. Opin. Cell Biol , vol.23 , pp. 258-265
    • Lejeune, E.1    Allshire, R.C.2
  • 73
    • 23944483515 scopus 로고    scopus 로고
    • Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification
    • Li, F., et al. 2005. Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification. Curr. Biol. 15:1448-1457.
    • (2005) Curr. Biol , vol.15 , pp. 1448-1457
    • Li, F.1
  • 74
    • 20044380139 scopus 로고    scopus 로고
    • The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans
    • Loftus, B. J., et al., 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321-1324.
    • (2005) Science , vol.307 , pp. 1321-1324
    • Loftus, B.J.1
  • 75
    • 77958517630 scopus 로고    scopus 로고
    • Chromosomal G + C content evolution in yeasts: Systematic interspecies differences, and GC-poor troughs at centromeres
    • Lynch, D. B., M. E. Logue, G. Butler, and K. H. Wolfe. 2010. Chromosomal G + C content evolution in yeasts: systematic interspecies differences, and GC-poor troughs at centromeres. Genome Biol. Evol. 2:572-583.
    • (2010) Genome Biol. Evol , vol.2 , pp. 572-583
    • Lynch, D.B.1    Logue, M.E.2    Butler, G.3    Wolfe, K.H.4
  • 76
    • 0242407193 scopus 로고    scopus 로고
    • Phylogenomics of the nucleosome
    • Malik, H. S., and S. Henikoff. 2003. Phylogenomics of the nucleosome. Nat. Struct. Biol. 10:882-891.
    • (2003) Nat. Struct. Biol , vol.10 , pp. 882-891
    • Malik, H.S.1    Henikoff, S.2
  • 77
    • 70149095590 scopus 로고    scopus 로고
    • Major evolutionary transitions in centromere complexity
    • Malik, H. S., and S. Henikoff. 2009. Major evolutionary transitions in centromere complexity. Cell 138:1067-1082.
    • (2009) Cell , vol.138 , pp. 1067-1082
    • Malik, H.S.1    Henikoff, S.2
  • 78
    • 33746112995 scopus 로고    scopus 로고
    • ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe
    • Matsuyama, A., et al. 2006. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Bio-technol. 24:841-847.
    • (2006) Nat. Bio-technol , vol.24 , pp. 841-847
    • Matsuyama, A.1
  • 79
    • 0022634481 scopus 로고
    • Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae
    • McGrew, J., B. Diehl, and M. Fitzgerald-Hayes. 1986. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 6:530-538.
    • (1986) Mol. Cell. Biol , vol.6 , pp. 530-538
    • McGrew, J.1    Diehl, B.2    Fitzgerald-Hayes, M.3
  • 80
    • 0032483564 scopus 로고    scopus 로고
    • Cse4p is a component of the core centromere of Saccharomyces cerevisiae
    • Meluh, P. B., P. Yang, L. Glowczewski, D. Koshland, and M. M. Smith. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607-613.
    • (1998) Cell , vol.94 , pp. 607-613
    • Meluh, P.B.1    Yang, P.2    Glowczewski, L.3    Koshland, D.4    Smith, M.M.5
  • 81
    • 33744786043 scopus 로고    scopus 로고
    • Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
    • Meraldi, P., A. McAinsh, E. Rheinbay, and P. Sorger. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7:R23.
    • (2006) Genome Biol , vol.7
    • Meraldi, P.1    McAinsh, A.2    Rheinbay, E.3    Sorger, P.4
  • 82
    • 34548742303 scopus 로고    scopus 로고
    • Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity
    • Mishra, P., M. Baum, and J. Carbon. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol. Genet. Genomics 278:455-465.
    • (2007) Mol. Genet. Genomics , vol.278 , pp. 455-465
    • Mishra, P.1    Baum, M.2    Carbon, J.3
  • 83
    • 34250173486 scopus 로고    scopus 로고
    • Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes
    • Mizuguchi, G., H. Xiao, J. Wisniewski, M. M. Smith, and C. Wu. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129:1153-1164.
    • (2007) Cell , vol.129 , pp. 1153-1164
    • Mizuguchi, G.1    Xiao, H.2    Wisniewski, J.3    Smith, M.M.4    Wu, C.5
  • 84
    • 58749097426 scopus 로고    scopus 로고
    • Small RNAs in transcriptional gene silencing and genome defence
    • Moazed, D. 2009. Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413-420.
    • (2009) Nature , vol.457 , pp. 413-420
    • Moazed, D.1
  • 85
    • 10944248935 scopus 로고    scopus 로고
    • Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs
    • Motamedi, M. R., et al. 2004. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119: 789-802.
    • (2004) Cell , vol.119 , pp. 789-802
    • Motamedi, M.R.1
  • 86
    • 0037451175 scopus 로고    scopus 로고
    • Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae
    • Mythreye, K., and K. S. Bloom. 2003. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol. 160:833-843.
    • (2003) J. Cell Biol , vol.160 , pp. 833-843
    • Mythreye, K.1    Bloom, K.S.2
  • 87
    • 0023664591 scopus 로고
    • A novel sequence common to the centromere regions of Schizosaccharomyces pombe chromosomes
    • Nakaseko, Y., N. Kinoshita, and M. Yanagida. 1987. A novel sequence common to the centromere regions of Schizosaccharomyces pombe chromosomes. Nucleic Acids Res. 15:4705-4715.
    • (1987) Nucleic Acids Res , vol.15 , pp. 4705-4715
    • Nakaseko, Y.1    Kinoshita, N.2    Yanagida, M.3
  • 88
    • 0035815360 scopus 로고    scopus 로고
    • Role of histone H3 lysine 9 methylation in epigenetic control of hetero-chromatin assembly
    • Nakayama, J., J. C. Rice, B. D. Strahl, C. D. Allis, and S. I. Grewal. 2001. Role of histone H3 lysine 9 methylation in epigenetic control of hetero-chromatin assembly. Science 292:110-113.
    • (2001) Science , vol.292 , pp. 110-113
    • Nakayama, J.1    Rice, J.C.2    Strahl, B.D.3    Allis, C.D.4    Grewal, S.I.5
  • 89
    • 0023462744 scopus 로고
    • Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae
    • Ng, R., and J. Carbon. 1987. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol. Cell. Biol. 7:4522-4534.
    • (1987) Mol. Cell. Biol , vol.7 , pp. 4522-4534
    • Ng, R.1    Carbon, J.2
  • 90
    • 34247609855 scopus 로고    scopus 로고
    • Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection
    • Nicolas, E., et al. 2007. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat. Struct. Mol. Biol. 14:372-380.
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 372-380
    • Nicolas, E.1
  • 91
    • 0034890466 scopus 로고    scopus 로고
    • A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotrans-posons
    • Nielsen, M. L., T. D. Hermansen, and A. Aleksenko. 2001. A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotrans-posons. Mol. Genet. Genomics 265:883-887.
    • (2001) Mol. Genet. Genomics , vol.265 , pp. 883-887
    • Nielsen, M.L.1    Hermansen, T.D.2    Aleksenko, A.3
  • 92
    • 0035839110 scopus 로고    scopus 로고
    • Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries
    • Noma, K., C. D. Allis, and S. I. S. Grewal. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150-1155.
    • (2001) Science , vol.293 , pp. 1150-1155
    • Noma, K.1    Allis, C.D.2    Grewal, S.I.S.3
  • 93
    • 0036144420 scopus 로고    scopus 로고
    • Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast
    • Nonaka, N., et al. 2002. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 4:89-93.
    • (2002) Nat. Cell Biol , vol.4 , pp. 89-93
    • Nonaka, N.1
  • 94
    • 0029593464 scopus 로고
    • Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system for Candida maltosa
    • Ohkuma, M., K. K. S. Kawai, C. W. Hwang, A. Ohta, and M. Takagi. 1995. Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system for Candida maltosa. Mol. Gen. Genet. 249:447-455.
    • (1995) Mol. Gen. Genet , vol.249 , pp. 447-455
    • Ohkuma, M.1    Kawai, K.K.S.2    Hwang, C.W.3    Ohta, A.4    Takagi, M.5
  • 95
    • 58149374566 scopus 로고    scopus 로고
    • Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis
    • Padmanabhan, S., J. Thakur, R. Siddharthan, and K. Sanyal. 2008. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc. Natl. Acad. Sci. U. S. A. 105:19797-19802.
    • (2008) Proc. Natl. Acad. Sci. U. S. A , vol.105 , pp. 19797-19802
    • Padmanabhan, S.1    Thakur, J.2    Siddharthan, R.3    Sanyal, K.4
  • 96
    • 0023275058 scopus 로고
    • A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones
    • Palmer, D. K., K. O'Day, M. H. Wener, B. S. Andrews, and R. L. Margolis. 1987. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104:805-815.
    • (1987) J. Cell Biol , vol.104 , pp. 805-815
    • Palmer, D.K.1    O'Day, K.2    Wener, M.H.3    Andrews, B.S.4    Margolis, R.L.5
  • 97
    • 78751482329 scopus 로고    scopus 로고
    • How to slice: Snapshots of Argonaute in action
    • Parker, J. 2010. How to slice: snapshots of Argonaute in action. Silence 1:3.
    • (2010) Silence , vol.1 , pp. 3
    • Parker, J.1
  • 98
    • 7944229979 scopus 로고    scopus 로고
    • Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase
    • Pearson, C. G., et al. 2004. Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14:1962-1967.
    • (2004) Curr. Biol , vol.14 , pp. 1962-1967
    • Pearson, C.G.1
  • 99
    • 16644385308 scopus 로고    scopus 로고
    • Kinetochore and heterochromatin domains of the fission yeast centromere
    • Pidoux, A., and R. Allshire. 2004. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res. 12:521-534.
    • (2004) Chromosome Res , vol.12 , pp. 521-534
    • Pidoux, A.1    Allshire, R.2
  • 100
    • 59649099984 scopus 로고    scopus 로고
    • Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin
    • Pidoux, A. L., et al. 2009. Fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell 33:299-311.
    • (2009) Mol. Cell , vol.33 , pp. 299-311
    • Pidoux, A.L.1
  • 101
    • 0026056958 scopus 로고
    • The chromatin structure of centromeres from fission yeast: Differentiation of the central core that correlates with function
    • Polizzi, C., and L. Clarke. 1991. The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. J. Cell Biol. 112:191-201.
    • (1991) J. Cell Biol , vol.112 , pp. 191-201
    • Polizzi, C.1    Clarke, L.2
  • 102
    • 78149424194 scopus 로고    scopus 로고
    • An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain
    • Ranjitkar, P., et al. 2010. An E3 ubiquitin ligase prevents ectopic localization of the centromeric histone H3 variant via the centromere targeting domain. Mol. Cell 40:455-464.
    • (2010) Mol. Cell , vol.40 , pp. 455-464
    • Ranjitkar, P.1
  • 103
    • 0034632829 scopus 로고    scopus 로고
    • Regulation of chromatin structure by site-specific histone H3 methyltransferases
    • Rea, S., et al. 2000. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593-599.
    • (2000) Nature , vol.406 , pp. 593-599
    • Rea, S.1
  • 104
    • 79956319465 scopus 로고    scopus 로고
    • Comparative functional genomics of the fission yeasts
    • Rhind, N., et al. 2011. Comparative functional genomics of the fission yeasts. Science 332:930-936.
    • (2011) Science , vol.332 , pp. 930-936
    • Rhind, N.1
  • 105
    • 18744407284 scopus 로고    scopus 로고
    • Purified Argonaute2 and an siRNA form recombinant human RISC
    • Rivas, F. V., et al. 2005. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12:340-349.
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 340-349
    • Rivas, F.V.1
  • 106
    • 79953045608 scopus 로고    scopus 로고
    • CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans
    • Roy, B., L. S. Burrack, M. A. Lone, J. Berman, and K. Sanyal. 2011. CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans. Mol. Microbiol. 80:14-32.
    • (2011) Mol. Microbiol , vol.80 , pp. 14-32
    • Roy, B.1    Burrack, L.S.2    Lone, M.A.3    Berman, J.4    Sanyal, K.5
  • 107
    • 0030694361 scopus 로고    scopus 로고
    • The mcm17 mutation of yeast shows a size-dependent segregational defect of a mini-chromosome
    • Roy, N., A. Poddar, A. Lohia, and P. Sinha. 1997. The mcm17 mutation of yeast shows a size-dependent segregational defect of a mini-chromosome. Curr. Genet. 32:182-189.
    • (1997) Curr. Genet , vol.32 , pp. 182-189
    • Roy, N.1    Poddar, A.2    Lohia, A.3    Sinha, P.4
  • 108
    • 6344285337 scopus 로고    scopus 로고
    • A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast
    • Sadaie, M., T. Iida, T. Urano, and J.-I, Nakayama. 2004. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23:3825-3835.
    • (2004) EMBO J , vol.23 , pp. 3825-3835
    • Sadaie, M.1    Iida, T.2    Urano, T.3    Nakayama, J.-I.4
  • 109
    • 0033958663 scopus 로고    scopus 로고
    • Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins
    • Saffery, R., et al. 2000. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9:175-185.
    • (2000) Hum. Mol. Genet , vol.9 , pp. 175-185
    • Saffery, R.1
  • 110
    • 3843076217 scopus 로고    scopus 로고
    • Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique
    • Sanyal, K., M. Baum, and J. Carbon. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc. Natl. Acad. Sci. U. S. A. 101:1137-11379.
    • (2004) Proc. Natl. Acad. Sci. U. S. A , vol.101 , pp. 1137-11379
    • Sanyal, K.1    Baum, M.2    Carbon, J.3
  • 111
    • 0025641736 scopus 로고
    • Premeiotic instability of repeated sequences in Neurospora Crassa
    • Selker, E. U. 1990. Premeiotic instability of repeated sequences in Neurospora Crassa. Annu. Rev. Genet. 24:579-613.
    • (1990) Annu. Rev. Genet , vol.24 , pp. 579-613
    • Selker, E.U.1
  • 112
    • 0023644245 scopus 로고
    • Rearrangement of duplicated DNA in specialized cells of Neurospora
    • Selker, E. U., E. B. Cambareri, B. C. Jensen, and K. R. Haack. 1987. Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51:741-752.
    • (1987) Cell , vol.51 , pp. 741-752
    • Selker, E.U.1    Cambareri, E.B.2    Jensen, B.C.3    Haack, K.R.4
  • 113
    • 0038714132 scopus 로고    scopus 로고
    • Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast
    • Shankaranarayana, G. D., M. R. Motamedi, D. Moazed, and S. I. S. Grewal. 2003. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol. 13:1240-1246.
    • (2003) Curr. Biol , vol.13 , pp. 1240-1246
    • Shankaranarayana, G.D.1    Motamedi, M.R.2    Moazed, D.3    Grewal, S.I.S.4
  • 114
    • 78449246729 scopus 로고    scopus 로고
    • Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex
    • Shanker, S., et al. 2010. Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex. PLoS Genet. 6:e1001174.
    • (2010) PLoS Genet , vol.6
    • Shanker, S.1
  • 115
    • 79958032907 scopus 로고    scopus 로고
    • Heterochromatin is required for normal distribution of Neurospora crassa CenH3
    • Smith, K. M., P. A. Phatale, C. M. Sullivan, K. R. Pomraning, and M. Freitag. 2011. Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol. Cell. Biol. 31:2528-2542.
    • (2011) Mol. Cell. Biol , vol.31 , pp. 2528-2542
    • Smith, K.M.1    Phatale, P.A.2    Sullivan, C.M.3    Pomraning, K.R.4    Freitag, M.5
  • 116
    • 46449112609 scopus 로고    scopus 로고
    • A high-resolution map of nucleosome positioning on a fission yeast centromere
    • Song, J. S., X. Liu, X. S. Liu, and X. He. 2008. A high-resolution map of nucleosome positioning on a fission yeast centromere. Genome Res. 18: 1064-1072.
    • (2008) Genome Res , vol.18 , pp. 1064-1072
    • Song, J.S.1    Liu, X.2    Liu, X.S.3    He, X.4
  • 117
    • 77955350734 scopus 로고    scopus 로고
    • Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Copri-nus cinereus)
    • Stajich, J. E., et al. 2010. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Copri-nus cinereus). Proc. Natl. Acad. Sci. U. S. A. 107:11889-11894.
    • (2010) Proc. Natl. Acad. Sci. U. S. A , vol.107 , pp. 11889-11894
    • Stajich, J.E.1
  • 118
    • 0027938794 scopus 로고
    • A novel epigenetic effect can alter centromere function in fission yeast
    • Steiner, N. C., and L. Clarke. 1994. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79:865-874.
    • (1994) Cell , vol.79 , pp. 865-874
    • Steiner, N.C.1    Clarke, L.2
  • 119
    • 0027305680 scopus 로고
    • Centromeres of the fission yeast Schizosacchawmyces pombe are highly variable genetic loci
    • Steiner, N. C., K. M. Hahnenberger, and L. Clarke. 1993. Centromeres of the fission yeast Schizosacchawmyces pombe are highly variable genetic loci. Mol. Cell. Biol. 13:4578-4587.
    • (1993) Mol. Cell. Biol , vol.13 , pp. 4578-4587
    • Steiner, N.C.1    Hahnenberger, K.M.2    Clarke, L.3
  • 120
    • 34547112848 scopus 로고    scopus 로고
    • Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization
    • Stoler, S., et al. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl. Acad. Sci. U. S. A. 104:10571-10576.
    • (2007) Proc. Natl. Acad. Sci. U. S. A , vol.104 , pp. 10571-10576
    • Stoler, S.1
  • 121
    • 33846703987 scopus 로고    scopus 로고
    • SHREC, an effector complex for heterochromatic transcriptional silencing
    • Sugiyama, T., et al. 2007. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128:491-504.
    • (2007) Cell , vol.128 , pp. 491-504
    • Sugiyama, T.1
  • 122
    • 0035921425 scopus 로고    scopus 로고
    • Centromere identity in Drosophila is not determined in vivo by replication timing
    • Sullivan, B., and G. Karpen. 2001. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol. 154:683-690.
    • (2001) J. Cell Biol , vol.154 , pp. 683-690
    • Sullivan, B.1    Karpen, G.2
  • 123
    • 0342646931 scopus 로고    scopus 로고
    • Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast
    • Takahashi, K., E. S. Chen, and M. Yanagida. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215-2219.
    • (2000) Science , vol.288 , pp. 2215-2219
    • Takahashi, K.1    Chen, E.S.2    Yanagida, M.3
  • 124
    • 0027097142 scopus 로고
    • A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere
    • Takahashi, K., et al. 1992. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3:819-835.
    • (1992) Mol. Biol. Cell , vol.3 , pp. 819-835
    • Takahashi, K.1
  • 125
    • 39449135350 scopus 로고    scopus 로고
    • Biphasic incorporation of centromeric histone CENP-A in fission yeast
    • Takayama, Y., et al. 2008. Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol. Biol. Cell 19:682-690.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 682-690
    • Takayama, Y.1
  • 126
    • 0033578935 scopus 로고    scopus 로고
    • Identification of cohesin association sites at centromeres and along chromosome arms
    • Tanaka, T., M. P. Cosma, K. Wirth, and K. Nasmyth. 1999. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847-858.
    • (1999) Cell , vol.98 , pp. 847-858
    • Tanaka, T.1    Cosma, M.P.2    Wirth, K.3    Nasmyth, K.4
  • 127
    • 31544449153 scopus 로고    scopus 로고
    • The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe
    • Thon, G., et al. 2005. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171:1583-1595.
    • (2005) Genetics , vol.171 , pp. 1583-1595
    • Thon, G.1
  • 128
    • 0038079839 scopus 로고    scopus 로고
    • Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer
    • Tomonaga, T., et al. 2003. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63:3511-3516.
    • (2003) Cancer Res , vol.63 , pp. 3511-3516
    • Tomonaga, T.1
  • 129
    • 0034762198 scopus 로고    scopus 로고
    • Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A
    • Van Hooser, A. A., et al. 2001. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114:3529-3542.
    • (2001) J. Cell Sci , vol.114 , pp. 3529-3542
    • van Hooser, A.A.1
  • 130
    • 0942279635 scopus 로고    scopus 로고
    • RNAi-mediated targeting of heterochromatin by the RITS complex
    • Verdel, A., et al. 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672-676.
    • (2004) Science , vol.303 , pp. 672-676
    • Verdel, A.1
  • 131
    • 0035847053 scopus 로고    scopus 로고
    • Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica
    • Vernis, L., et al. 2001. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica. J. Mol. Biol. 305:203-217.
    • (2001) J. Mol. Biol , vol.305 , pp. 203-217
    • Vernis, L.1
  • 132
    • 34547496876 scopus 로고    scopus 로고
    • Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome
    • Villasante, A., J. P. Abad, and M. Mendez-Lago. 2007. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc. Natl. Acad. Sci. U. S. A. 104:10542-10547.
    • (2007) Proc. Natl. Acad. Sci. U. S. A , vol.104 , pp. 10542-10547
    • Villasante, A.1    Abad, J.P.2    Mendez-Lago, M.3
  • 133
    • 0038738781 scopus 로고    scopus 로고
    • RNA interference is required for normal centromere function in fission yeast
    • Volpe, T., et al. 2003. RNA interference is required for normal centromere function in fission yeast. Chromosome Res. 11:137-146.
    • (2003) Chromosome Res , vol.11 , pp. 137-146
    • Volpe, T.1
  • 134
    • 0037072661 scopus 로고    scopus 로고
    • Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi
    • Volpe, T. A., et al. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833-1837.
    • (2002) Science , vol.297 , pp. 1833-1837
    • Volpe, T.A.1
  • 135
    • 0242266928 scopus 로고    scopus 로고
    • Architecture of the budding yeast kinetochore reveals a conserved molecular core
    • Westermann, S., et al. 2003. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163:215-222.
    • (2003) J. Cell Biol , vol.163 , pp. 215-222
    • Westermann, S.1
  • 136
    • 0025203702 scopus 로고
    • Centromeres of mammalian chromosomes
    • Willard, H. F. 1990. Centromeres of mammalian chromosomes. Trends Genet. 6:410-415.
    • (1990) Trends Genet , vol.6 , pp. 410-415
    • Willard, H.F.1
  • 137
    • 59649107021 scopus 로고    scopus 로고
    • Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin
    • Williams, J. S., T. Hayashi, M. Yanagida, and P. Russell. 2009. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin. Mol. Cell 33:287-298.
    • (2009) Mol. Cell , vol.33 , pp. 287-298
    • Williams, J.S.1    Hayashi, T.2    Yanagida, M.3    Russell, P.4
  • 138
    • 0037148758 scopus 로고    scopus 로고
    • The genome sequence of Schizosaccharomyces pombe
    • Wood, V., et al. 2002. The genome sequence of Schizosaccharomyces pombe. Nature 415:871-880.
    • (2002) Nature , vol.415 , pp. 871-880
    • Wood, V.1
  • 139
    • 41649092299 scopus 로고    scopus 로고
    • Roles of the Qr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin
    • Zhang, K., K. Mosch, W. Fischle, and S. I. S. Grewal. 2008. Roles of the Qr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15:381-388.
    • (2008) Nat. Struct. Mol. Biol , vol.15 , pp. 381-388
    • Zhang, K.1    Mosch, K.2    Fischle, W.3    Grewal, S.I.S.4
  • 140
    • 79954613013 scopus 로고    scopus 로고
    • Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3
    • Zhou, Z., et al. 2011. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3. Nature 472:234-237.
    • (2011) Nature , vol.472 , pp. 234-237
    • Zhou, Z.1
  • 141
    • 34249317118 scopus 로고    scopus 로고
    • RNAi-mediated heterochromatin assembly in fission yeast
    • Zofall, M., and S. I. S. Grewal. 2006. RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb. Symp. Quant. Biol. 71:487-496.
    • (2006) Cold Spring Harb. Symp. Quant. Biol , vol.71 , pp. 487-496
    • Zofall, M.1    Grewal, S.I.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.