메뉴 건너뛰기




Volumn 371, Issue 1990, 2013, Pages

A semi-discrete finite element method for a class of time-fractional diffusion equations

Author keywords

Anomalous transport; Finite element method; Mittag Leffler function; Time fractional diffusion equation

Indexed keywords

AQUIFERS; FINITE ELEMENT METHOD; GROUNDWATER POLLUTION; GROUNDWATER RESOURCES;

EID: 84875907616     PISSN: 1364503X     EISSN: None     Source Type: Journal    
DOI: 10.1098/rsta.2012.0268     Document Type: Article
Times cited : (41)

References (49)
  • 1
    • 0023249063 scopus 로고
    • Theory of solute transport by groundwater
    • doi:10.1146/annurev.fl.19.010187.001151
    • Dagan G 1987 Theory of solute transport by groundwater. Annu. Rev. Fluid Mech. 19, 183-215. (doi:10.1146/annurev.fl.19.010187.001151)
    • (1987) Annu. Rev. Fluid Mech. , vol.19 , pp. 183-215
    • Dagan, G.1
  • 2
    • 0035065504 scopus 로고    scopus 로고
    • Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system
    • doi:10.1023/A:1006772716244
    • LaBolle EM, Fogg GE. 2001 Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system. Transport Porous Med. 42, 155-179. (doi:10.1023/A:1006772716244)
    • (2001) Transport Porous Med , vol.42 , pp. 155-179
    • Labolle, E.M.1    Fogg, G.E.2
  • 3
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • doi:10.1016/S0370-1573(00)00070-3
    • Metzler R, Klafter J. 2000 The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77. (doi:10.1016/S0370-1573(00)00070-3)
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 4
    • 62349097511 scopus 로고    scopus 로고
    • Time and space nonlocalities underlying fractionalderivative models: Distinction and literature review of field applications
    • doi:10.1016/j.advwatres.2009.01.008
    • Zhang Y, Benson DA, Reeves DM. 2009 Time and space nonlocalities underlying fractionalderivative models: distinction and literature review of field applications. Adv. Water Resour. 32, 561-581. (doi:10.1016/j.advwatres. 2009.01.008)
    • (2009) Adv. Water Resour. , vol.32 , pp. 561-581
    • Zhang, Y.1    Benson, D.A.2    Reeves, D.M.3
  • 6
    • 0029506402 scopus 로고
    • On characterization of anomalous dispersion in porous media
    • doi:10.1029/95WR00483
    • Berkowitz B, Scher H. 1995 On characterization of anomalous dispersion in porous media. Water Resour. Res. 31, 1461-1466. (doi:10.1029/95WR00483)
    • (1995) Water Resour. Res. , vol.31 , pp. 1461-1466
    • Berkowitz, B.1    Scher, H.2
  • 7
    • 55649099424 scopus 로고    scopus 로고
    • A finite element solution for the fractional advection-dispersion equation
    • doi:10.1016/j.advwatres.2008.07.002
    • Huang QZ, Huang GH, Zhan HB. 2008 A finite element solution for the fractional advection-dispersion equation. Adv. Water Resour. 31, 1578-1589. (doi:10.1016/j.advwatres.2008.07.002)
    • (2008) Adv. Water Resour. , vol.31 , pp. 1578-1589
    • Huang, Q.Z.1    Huang, G.H.2    Zhan, H.B.3
  • 8
    • 18344370872 scopus 로고    scopus 로고
    • Operator Ĺevy motion and multiscaling anomalous diffusion
    • doi:10.1103/PhysRevE.63.021112
    • Meerschaert MM, Benson DA, Baeumer B. 2001 Operator Ĺevy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 021112. (doi:10.1103/PhysRevE.63.021112)
    • (2001) Phys. Rev. e , vol.63 , pp. 021112
    • Meerschaert, M.M.1    Benson, D.A.2    Baeumer, B.3
  • 9
    • 68649098514 scopus 로고    scopus 로고
    • Variable-order fractional differential operator in anomalous diffusion modeling
    • doi:10.1016/j.physa.2009.07.024
    • Sun HG, ChenW, Chen YQ. 2009 Variable-order fractional differential operator in anomalous diffusion modeling. Physica A 388, 4586-4592. (doi:10.1016/j.physa.2009.07.024)
    • (2009) Physica A , vol.388 , pp. 4586-4592
    • Sun, H.G.1    Chen, W.2    Chen, Y.Q.3
  • 10
    • 33847315613 scopus 로고    scopus 로고
    • The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: Defining the fractional dispersive flux with the Caputo derivatives
    • doi:10.1016/j.advwatres.2006.11.002
    • Zhang XX, Lv M, Crawford JW, Young IM. 2007 The impact of boundary on the fractional advection-dispersion equation for solute transport in soil: defining the fractional dispersive flux with the Caputo derivatives. Adv. Water Resour. 30, 1205-1217. (doi:10.1016/j.advwatres.2006.11.002)
    • (2007) Adv. Water Resour. , vol.30 , pp. 1205-1217
    • Zhang, X.X.1    Lv, M.2    Crawford, J.W.3    Young, I.M.4
  • 11
    • 0034032484 scopus 로고    scopus 로고
    • Application of a fractional advection-dispersion equation
    • doi:10.1029/2000WR900031
    • Benson DA, Wheatcraft SW, Meerschaert MM. 2000 Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403-1412. (doi:10.1029/2000WR900031)
    • (2000) Water Resour. Res. , vol.36 , pp. 1403-1412
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 12
    • 33845247896 scopus 로고    scopus 로고
    • Modeling non-Fickian transport in geological formations as a continuous time random walk
    • doi:10.1029/2005RG000178
    • Berkowitz B, Cortis A, Dentz M, Scher H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003. (doi:10.1029/2005RG000178)
    • (2006) Rev. Geophys. , vol.44
    • Berkowitz, B.1    Cortis, A.2    Dentz, M.3    Scher, H.4
  • 13
    • 34247170341 scopus 로고    scopus 로고
    • Magnetic resonance microscopy of biofouling induced scale dependent transport in porous media
    • doi:10.1016/j.advwatres.2006.05.029
    • Seymour JD, Gage JP, Codd SL, Gerlach R. 2007 Magnetic resonance microscopy of biofouling induced scale dependent transport in porous media. Adv. Water Resour. 30, 1408-1420. (doi:10.1016/j.advwatres.2006.05.029)
    • (2007) Adv. Water Resour. , vol.30 , pp. 1408-1420
    • Seymour, J.D.1    Gage, J.P.2    Codd, S.L.3    Gerlach, R.4
  • 14
    • 38349041965 scopus 로고    scopus 로고
    • Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation
    • doi:10.1016/j.jmr.2007.11.007
    • Magin RL, Abdullah O, Baleanu D, Zhou XJ. 2008 Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190, 255-270. (doi:10.1016/j.jmr.2007.11.007)
    • (2008) J. Magn. Reson. , vol.190 , pp. 255-270
    • Magin, R.L.1    Abdullah, O.2    Baleanu, D.3    Zhou, X.J.4
  • 15
    • 59649085150 scopus 로고    scopus 로고
    • Solving the fractional order Bloch equation
    • doi:10.1002/cmr.a.20129
    • Magin R, Feng X, Baleanu D. 2009 Solving the fractional order Bloch equation. Concepts Magn. Reson. A 34, 16-23. (doi:10.1002/cmr.a.20129)
    • (2009) Concepts Magn. Reson. A , vol.34 , pp. 16-23
    • Magin, R.1    Feng, X.2    Baleanu, D.3
  • 16
    • 31144434675 scopus 로고    scopus 로고
    • From diffusion to anomalous diffusion: A century after Einstein's Brownian motion
    • doi:10.1063/1.1860472
    • Sokolov IM, Klafter J. 2005 From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. Chaos 15, 026103. (doi:10.1063/1. 1860472)
    • (2005) Chaos , vol.15 , pp. 026103
    • Sokolov, I.M.1    Klafter, J.2
  • 17
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics, and anomalous transport
    • doi:10.1016/S0370-1573(02)00331-9
    • Zaslavsky GM. 2002 Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461-580. (doi:10.1016/S0370-1573(02)00331-9)
    • (2002) Phys. Rep. , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1
  • 19
    • 84861220597 scopus 로고    scopus 로고
    • Finite difference methods for fractional differential equations
    • doi:10.1142/S0218127412300145
    • Li C, Zeng FH. 2012 Finite difference methods for fractional differential equations. Int. J. Bifurcation Chaos 22, 1230014. (doi:10.1142/ S0218127412300145)
    • (2012) Int. J. Bifurcation Chaos , vol.22 , pp. 1230014
    • Li, C.1    Zeng, F.H.2
  • 20
    • 79960990048 scopus 로고    scopus 로고
    • Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
    • doi:10.1016/j.camwa.2011.02.045
    • Li C, Zhao ZG, Chen YQ. 2011 Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855-875. (doi:10.1016/j.camwa.2011.02.045)
    • (2011) Comput. Math. Appl. , vol.62 , pp. 855-875
    • Li, C.1    Zhao, Z.G.2    Chen, Y.Q.3
  • 21
    • 61349186917 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus II: Partial fractional differential equations
    • doi:10.1016/j.jcp.2009.01.014
    • Podlubny I, Chechkin A, Skovranek T, Chen YQ, Vinagre Jara BM. 2009 Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137-3153. (doi:10.1016/j.jcp. 2009.01.014)
    • (2009) J. Comput. Phys. , vol.228 , pp. 3137-3153
    • Podlubny, I.1    Chechkin, A.2    Skovranek, T.3    Chen, Y.Q.4    Vinagre Jara, B.M.5
  • 22
    • 33646191893 scopus 로고    scopus 로고
    • 2
    • doi:10.1016/j.cam.2005.06.005
    • 2. J. Comput. Appl. Math. 193, 243-268. (doi:10.1016/j.cam.2005.06. 005)
    • (2006) J. Comput. Appl. Math. , vol.193 , pp. 243-268
    • Roop, J.P.1
  • 23
    • 84861204912 scopus 로고    scopus 로고
    • Finite difference schemes for variable-order time fractional diffusion equation
    • doi:10.1142/S021812741250085X
    • Sun HG, Chen W, Li C, Chen YQ. 2012 Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcation Chaos 22, 1250085. (doi:10.1142/S021812741250085X)
    • (2012) Int. J. Bifurcation Chaos , vol.22 , pp. 1250085
    • Sun, H.G.1    Chen, W.2    Li, C.3    Chen, Y.Q.4
  • 24
    • 0035625795 scopus 로고    scopus 로고
    • The numerical solution of fractional differential equations: Speed versus accuracy
    • doi:10.1023/A:1016601312158
    • Ford NJ, Simpson AC. 2001 The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 336-346. (doi:10.1023/A:1016601312158)
    • (2001) Numer. Algorithms , vol.26 , pp. 336-346
    • Ford, N.J.1    Simpson, A.C.2
  • 28
    • 78650179467 scopus 로고    scopus 로고
    • Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: A comparative study
    • doi:10.1016/j.advwatres.2010.09.012
    • Radu FA, Suciu N, Hoffmann J, Vogel A, Kolditz O, Park CH, Attinger S. 2011 Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour. 34, 47-61. (doi:10.1016/j.advwatres.2010.09.012)
    • (2011) Adv. Water Resour. , vol.34 , pp. 47-61
    • Radu, F.A.1    Suciu, N.2    Hoffmann, J.3    Vogel, A.4    Kolditz, O.5    Park, C.H.6    Attinger, S.7
  • 31
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • doi:10.1016/j.jcp.2007.05.012
    • Chen CM, Liu F, Turner I, Anh V. 2007 A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886-897. (doi:10.1016/j.jcp.2007.05.012)
    • (2007) J. Comput. Phys. , vol.227 , pp. 886-897
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 32
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • doi:10.1016/j.jcp.2005.12.006
    • Yuste SB. 2006 Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264-274. (doi:10.1016/j.jcp.2005.12. 006)
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 33
    • 14644446063 scopus 로고    scopus 로고
    • Least squares finite-element solution of a fractional order two-point boundary value problem
    • doi:10.1016/j.camwa.2004.10.003
    • Fix GJ, Roop JP. 2004 Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017-1033. (doi:10.1016/j.camwa. 2004.10.003)
    • (2004) Comput. Math. Appl. , vol.48 , pp. 1017-1033
    • Fix, G.J.1    Roop, J.P.2
  • 34
    • 59349113701 scopus 로고    scopus 로고
    • Finite element method for the space and time fractional Fokker-Planck equation
    • doi:10.1137/080714130
    • Deng WH. 2008 Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204-226. (doi:10.1137/ 080714130)
    • (2008) SIAM J. Numer. Anal. , vol.47 , pp. 204-226
    • Deng, W.H.1
  • 35
    • 77958016082 scopus 로고    scopus 로고
    • Galerkin finite element approximation of symmetric spacefractional partial differential equations
    • doi:10.1016/j.amc.2010.07.066
    • Zhang H, Liu F, Anh V. 2010 Galerkin finite element approximation of symmetric spacefractional partial differential equations. Appl. Math. Comput. 217, 2534-2545. (doi:10.1016/j.amc.2010.07.066)
    • (2010) Appl. Math. Comput. , vol.217 , pp. 2534-2545
    • Zhang, H.1    Liu, F.2    Anh, V.3
  • 36
    • 76449122108 scopus 로고    scopus 로고
    • A note on the finite element method for the spacefractional advection diffusion equation
    • doi:10.1016/j.camwa.2009.08.071
    • Zheng YY, Li CP, Zhao ZG. 2010 A note on the finite element method for the spacefractional advection diffusion equation. Comput. Math. Appl. 59, 1718-1726. (doi:10.1016/j.camwa.2009.08.071)
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1718-1726
    • Zheng, Y.Y.1    Li, C.P.2    Zhao, Z.G.3
  • 37
    • 79952454978 scopus 로고    scopus 로고
    • Numerical approaches to fractional calculus and fractional ordinary differential equation
    • doi:10.1016/j.jcp.2011.01.030
    • Li C, Chen A, Ye JJ. 2011 Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352-3368. (doi:10.1016/j.jcp.2011.01.030)
    • (2011) J. Comput. Phys. , vol.230 , pp. 3352-3368
    • Li, C.1    Chen, A.2    Ye, J.J.3
  • 38
    • 79960431454 scopus 로고    scopus 로고
    • Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions
    • doi:10.1137/100800634
    • Yang Q, Turner I, Liu F, Ilíc M. 2011 Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159-1180. (doi:10.1137/100800634)
    • (2011) SIAM J. Sci. Comput. , vol.33 , pp. 1159-1180
    • Yang, Q.1    Turner, I.2    Liu, F.3    Ilíc, M.4
  • 39
    • 33745712076 scopus 로고    scopus 로고
    • An approximate method for numerical solution of fractional differential equations
    • doi:10.1016/j.sigpro.2006.02.007
    • Kumar P, Agrawal OP. 2006 An approximate method for numerical solution of fractional differential equations. Signal Process. 86, 2602-2610. (doi:10.1016/j.sigpro.2006.02.007)
    • (2006) Signal Process , vol.86 , pp. 2602-2610
    • Kumar, P.1    Agrawal, O.P.2
  • 41
    • 0014731747 scopus 로고
    • A finite element solution of the one-dimensional diffusion-convection equation
    • doi:10.1029/WR006i001p00204
    • Guymon GL. 1970 A finite element solution of the one-dimensional diffusion-convection equation. Water Resour. Res. 6, 204-210. (doi:10.1029/WR006i001p00204)
    • (1970) Water Resour. Res. , vol.6 , pp. 204-210
    • Guymon, G.L.1
  • 42
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusion-wave phenomena
    • doi:10.1016/0960-0779(95)00125-5
    • Mainardi F. 1996 Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons Fractals 7, 1461-1477. (doi:10.1016/0960-0779(95)00125-5)
    • (1996) Chaos, Solitons Fractals , vol.7 , pp. 1461-1477
    • Mainardi, F.1
  • 43
    • 84863603817 scopus 로고    scopus 로고
    • Matlab Central
    • Chen YQ. 2008 Generalized Mittag-Leffler function. Matlab Central. See http://www.mathworks.de/matlabcentral/fileexchange/20849-generalized-mittag- leffler-function.
    • (2008) Generalized Mittag-Leffler Function
    • Chen, Y.Q.1
  • 44
    • 78049345257 scopus 로고    scopus 로고
    • Matlab Central
    • Podlubny I. 2009 Mittag-Leffler function. Matlab Central. See http://www.mathworks.de/matlabcentral/fileexchange/8738-mittag-leffler-function.
    • (2009) Mittag-Leffler Function
    • Podlubny, I.1
  • 45
    • 74249113616 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional advection-diffusion equation
    • doi:10.1016/j.physleta.2009.10.004
    • Su LJ,Wang WQ, Yang ZX. 2009 Finite difference approximations for the fractional advection-diffusion equation. Phys. Lett. A 373, 4405-4408. (doi:10.1016/j.physleta.2009.10.004)
    • (2009) Phys. Lett. A , vol.373 , pp. 4405-4408
    • Su, L.J.1    Wang, W.Q.2    Yang, Z.X.3
  • 46
    • 0032876756 scopus 로고    scopus 로고
    • Modeling ground water flow and radioactive transport in a fractured aquifer
    • doi:10.1111/j.1745-6584.1999.tb01170.x
    • Pohll G, Hassan AE, Chapman JB, Papelis C, Andricevic R. 1999 Modeling ground water flow and radioactive transport in a fractured aquifer. Ground Water 37, 770-784. (doi:10.1111/j.1745-6584.1999.tb01170.x)
    • (1999) Ground Water , vol.37 , pp. 770-784
    • Pohll, G.1    Hassan, A.E.2    Chapman, J.B.3    Papelis, C.4    Andricevic, R.5
  • 47
    • 1242344799 scopus 로고    scopus 로고
    • Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test
    • doi:10.1029/2002WR001597
    • Reimus P, Pohll G, Mihevc T, Chapman J, Haga M, Lyles B, Kosinski S, Niswonger R, Sanders P. 2003 Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test. Water Resour. Res. 39, 1356-1370. (doi:10.1029/ 2002WR001597)
    • (2003) Water Resour. Res. , vol.39 , pp. 1356-1370
    • Reimus, P.1    Pohll, G.2    Mihevc, T.3    Chapman, J.4    Haga, M.5    Lyles, B.6    Kosinski, S.7    Niswonger, R.8    Sanders, P.9
  • 48
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • doi:10.1016/j.cam.2004.01.033
    • Meerschaert MM, Tadjeran C. 2004 Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65-77. (doi:10.1016/j.cam.2004.01.033)
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 49
    • 61749095605 scopus 로고    scopus 로고
    • A hybrid-Trefftz finite element model for Helmholtz problem
    • doi:10.1002/cnm.1094
    • Sze KY, Cheung YK. 2008 A hybrid-Trefftz finite element model for Helmholtz problem. Commun. Numer. Meth. Eng. 24, 2047-2060. (doi:10.1002/cnm. 1094)
    • (2008) Commun. Numer. Meth. Eng. , vol.24 , pp. 2047-2060
    • Sze, K.Y.1    Cheung, Y.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.