메뉴 건너뛰기




Volumn 19, Issue 6, 2008, Pages 971-982

Global convergence of SMO algorithm for support vector regression

Author keywords

Convergence; Quadratic programming (QP); Sequential minimal optimization (SMO); Support vector regression (SVR)

Indexed keywords

CONVERGENCE; CONVEX QUADRATIC PROGRAMMING; EFFICIENT IMPLEMENTATIONS; FINITE NUMBERS; GLOBAL CONVERGENCES; OPTIMAL SOLUTIONS; OPTIMALITY CONDITIONS; SEQUENTIAL MINIMAL OPTIMIZATION (SMO); SEQUENTIAL MINIMAL OPTIMIZATION ALGORITHMS; SMO ALGORITHMS; SUB-PROBLEMS; SUPPORT VECTOR REGRESSION (SVR); TRAINING SAMPLES;

EID: 49149114060     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.915116     Document Type: Article
Times cited : (43)

References (26)
  • 3
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
    • J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Machines, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Machines
    • Platt, J.C.1
  • 4
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
    • T. Joachims, "Making large-scale support vector machine learning practical," in Advances in Kernel Methods: Support Vector Machines B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Machines
    • Joachims, T.1
  • 5
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's SMO algorithm for SVM classifier design," Neural Comput., vol. 13, pp. 637-649, 2001.
    • (2001) Neural Comput , vol.13 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 6
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machines
    • C.-W. Hsu and C.-J. Lin, "A simple decomposition method for support vector machines," Mach. Learn., vol. 46, pp. 291-314, 2002.
    • (2002) Mach. Learn , vol.46 , pp. 291-314
    • Hsu, C.-W.1    Lin, C.-J.2
  • 7
    • 0034228643 scopus 로고    scopus 로고
    • The analysis of decomposition methods for support vector machines
    • Jul
    • C.-C. Chang, C.-W. Hsu, and C.-J. Lin, "The analysis of decomposition methods for support vector machines," IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1003-1008, Jul. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.4 , pp. 1003-1008
    • Chang, C.-C.1    Hsu, C.-W.2    Lin, C.-J.3
  • 8
    • 0035506741 scopus 로고    scopus 로고
    • On the convergence of the decomposition method for support vector machines
    • Nov
    • C.-J. Lin, "On the convergence of the decomposition method for support vector machines," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1288-1298, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1288-1298
    • Lin, C.-J.1
  • 9
    • 0036737295 scopus 로고    scopus 로고
    • A formal analysis of stopping criteria of decomposition methods for support vector machines
    • Sep
    • C.-J. Lin, "A formal analysis of stopping criteria of decomposition methods for support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1045-1052, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.5 , pp. 1045-1052
    • Lin, C.-J.1
  • 10
    • 9444296042 scopus 로고    scopus 로고
    • A general convergence theorem for the decomposition method
    • N. List and H. U. Simon, "A general convergence theorem for the decomposition method," in Proc. 17th Annu. Conf. Learn. Theory, 2004, pp. 363-377.
    • (2004) Proc. 17th Annu. Conf. Learn. Theory , pp. 363-377
    • List, N.1    Simon, H.U.2
  • 11
    • 34248677013 scopus 로고    scopus 로고
    • Global convergence of decomposition learning methods for support vector machines
    • Nov
    • N. Takahashi and T. Nishi, "Global convergence of decomposition learning methods for support vector machines," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1362-1369, Nov. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1362-1369
    • Takahashi, N.1    Nishi, T.2
  • 12
    • 0036129250 scopus 로고    scopus 로고
    • Asymptotic convergence of an SMO algorithm without any assumption
    • Jan
    • C.-J. Lin, "Asymptotic convergence of an SMO algorithm without any assumption," IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 248-250, Jan. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.1 , pp. 248-250
    • Lin, C.-J.1
  • 13
    • 0036163654 scopus 로고    scopus 로고
    • Convergence of a generalized SMO algorithm for SVM classifier design
    • S. S. Keerthi and E. G. Gilbert, "Convergence of a generalized SMO algorithm for SVM classifier design," Mach. Learn., vol. 46, pp. 351-360, 2002.
    • (2002) Mach. Learn , vol.46 , pp. 351-360
    • Keerthi, S.S.1    Gilbert, E.G.2
  • 14
    • 19344375172 scopus 로고    scopus 로고
    • Rigorous proof of termination of SMO algorithm for support vector machines
    • May
    • N. Takahashi and T. Nishi, "Rigorous proof of termination of SMO algorithm for support vector machines," IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 774-776, May 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.3 , pp. 774-776
    • Takahashi, N.1    Nishi, T.2
  • 15
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • Jul
    • P.-H. Chen, R.-E. Fan, and C.-J. Lin, "A study on SMO-type decomposition methods for support vector machines," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 893-908, Jul. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.4 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, C.-J.3
  • 17
    • 0040081684 scopus 로고    scopus 로고
    • A note on the decomposition methods for support vector regression
    • S.-P. Liao, H.-T. Lin, and C.-J. Lin, "A note on the decomposition methods for support vector regression," Neural Comput., vol. 14, pp. 1267-1281, 2002.
    • (2002) Neural Comput , vol.14 , pp. 1267-1281
    • Liao, S.-P.1    Lin, H.-T.2    Lin, C.-J.3
  • 18
    • 65449173493 scopus 로고    scopus 로고
    • A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Royal Holloway College, London, U.K., NeuroCOLT Tech. Rep. NC-TR-98-030, 1998.
    • A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Royal Holloway College, London, U.K., NeuroCOLT Tech. Rep. NC-TR-98-030, 1998.
  • 20
    • 0036160859 scopus 로고    scopus 로고
    • Efficient SVM regression training with SMO
    • G. W. Flake and S. Lawrence, "Efficient SVM regression training with SMO," Mach. Learn., vol. 46, pp. 271-290, 2002.
    • (2002) Mach. Learn , vol.46 , pp. 271-290
    • Flake, G.W.1    Lawrence, S.2
  • 21
    • 33750600332 scopus 로고    scopus 로고
    • A novel sequential minimal optimization algorithm for support vector regression
    • Oct
    • J. Guo, N. Takahashi, and T. Nishi, "A novel sequential minimal optimization algorithm for support vector regression," in Lecture Notes in Computer Science, Oct. 2006, vol. 4232, pp. 827-836.
    • (2006) Lecture Notes in Computer Science , vol.4232 , pp. 827-836
    • Guo, J.1    Takahashi, N.2    Nishi, T.3
  • 22
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R.-E. Fan, P.-H. Chen, and C.-J. Lin, "Working set selection using second order information for training support vector machines," J. Mach. Learn. Res., vol. 6, pp. 1889-1918, 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 23
    • 33646392997 scopus 로고    scopus 로고
    • QP algorithms with guaranteed accuracy and run time for support vector machines
    • D. Hush, P. Kelly, C. Scovel, and I. Steinwart, "QP algorithms with guaranteed accuracy and run time for support vector machines," J. Mach. Learn. Res., vol. 7, pp. 733-769, 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 733-769
    • Hush, D.1    Kelly, P.2    Scovel, C.3    Steinwart, I.4
  • 24
    • 33745784639 scopus 로고    scopus 로고
    • Maximum-gain working set selection for SVMs
    • T. Glasmachers and C. Igel, "Maximum-gain working set selection for SVMs," J. Mach. Learn. Res., vol. 7, pp. 1437-1466, 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1437-1466
    • Glasmachers, T.1    Igel, C.2
  • 26
    • 84870538169 scopus 로고    scopus 로고
    • Online, Available
    • "StatLib-datasets archive," [Online]. Available: http:// lib.stat.cmu.edu/datasets/
    • StatLib-datasets archive


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.