-
2
-
-
0031334889
-
An improved training algorithm for support vector machines
-
E. Osuna, R. Freund, and F. Girosi, "An improved training algorithm for support vector machines," in Proc. IEEE Workshop Neural Netw. Signal Process., 1997, pp. 511-519.
-
(1997)
Proc. IEEE Workshop Neural Netw. Signal Process
, pp. 511-519
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
3
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
-
J. C. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Machines, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Machines
-
-
Platt, J.C.1
-
4
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
-
T. Joachims, "Making large-scale support vector machine learning practical," in Advances in Kernel Methods: Support Vector Machines B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Machines
-
-
Joachims, T.1
-
5
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to Platt's SMO algorithm for SVM classifier design," Neural Comput., vol. 13, pp. 637-649, 2001.
-
(2001)
Neural Comput
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
6
-
-
0036158552
-
A simple decomposition method for support vector machines
-
C.-W. Hsu and C.-J. Lin, "A simple decomposition method for support vector machines," Mach. Learn., vol. 46, pp. 291-314, 2002.
-
(2002)
Mach. Learn
, vol.46
, pp. 291-314
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
7
-
-
0034228643
-
The analysis of decomposition methods for support vector machines
-
Jul
-
C.-C. Chang, C.-W. Hsu, and C.-J. Lin, "The analysis of decomposition methods for support vector machines," IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1003-1008, Jul. 2000.
-
(2000)
IEEE Trans. Neural Netw
, vol.11
, Issue.4
, pp. 1003-1008
-
-
Chang, C.-C.1
Hsu, C.-W.2
Lin, C.-J.3
-
8
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
Nov
-
C.-J. Lin, "On the convergence of the decomposition method for support vector machines," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1288-1298, Nov. 2001.
-
(2001)
IEEE Trans. Neural Netw
, vol.12
, Issue.6
, pp. 1288-1298
-
-
Lin, C.-J.1
-
9
-
-
0036737295
-
A formal analysis of stopping criteria of decomposition methods for support vector machines
-
Sep
-
C.-J. Lin, "A formal analysis of stopping criteria of decomposition methods for support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1045-1052, Sep. 2002.
-
(2002)
IEEE Trans. Neural Netw
, vol.13
, Issue.5
, pp. 1045-1052
-
-
Lin, C.-J.1
-
10
-
-
9444296042
-
A general convergence theorem for the decomposition method
-
N. List and H. U. Simon, "A general convergence theorem for the decomposition method," in Proc. 17th Annu. Conf. Learn. Theory, 2004, pp. 363-377.
-
(2004)
Proc. 17th Annu. Conf. Learn. Theory
, pp. 363-377
-
-
List, N.1
Simon, H.U.2
-
11
-
-
34248677013
-
Global convergence of decomposition learning methods for support vector machines
-
Nov
-
N. Takahashi and T. Nishi, "Global convergence of decomposition learning methods for support vector machines," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1362-1369, Nov. 2006.
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.6
, pp. 1362-1369
-
-
Takahashi, N.1
Nishi, T.2
-
12
-
-
0036129250
-
Asymptotic convergence of an SMO algorithm without any assumption
-
Jan
-
C.-J. Lin, "Asymptotic convergence of an SMO algorithm without any assumption," IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 248-250, Jan. 2002.
-
(2002)
IEEE Trans. Neural Netw
, vol.13
, Issue.1
, pp. 248-250
-
-
Lin, C.-J.1
-
13
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
S. S. Keerthi and E. G. Gilbert, "Convergence of a generalized SMO algorithm for SVM classifier design," Mach. Learn., vol. 46, pp. 351-360, 2002.
-
(2002)
Mach. Learn
, vol.46
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
14
-
-
19344375172
-
Rigorous proof of termination of SMO algorithm for support vector machines
-
May
-
N. Takahashi and T. Nishi, "Rigorous proof of termination of SMO algorithm for support vector machines," IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 774-776, May 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.3
, pp. 774-776
-
-
Takahashi, N.1
Nishi, T.2
-
15
-
-
33746932071
-
A study on SMO-type decomposition methods for support vector machines
-
Jul
-
P.-H. Chen, R.-E. Fan, and C.-J. Lin, "A study on SMO-type decomposition methods for support vector machines," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 893-908, Jul. 2006.
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.4
, pp. 893-908
-
-
Chen, P.-H.1
Fan, R.-E.2
Lin, C.-J.3
-
17
-
-
0040081684
-
A note on the decomposition methods for support vector regression
-
S.-P. Liao, H.-T. Lin, and C.-J. Lin, "A note on the decomposition methods for support vector regression," Neural Comput., vol. 14, pp. 1267-1281, 2002.
-
(2002)
Neural Comput
, vol.14
, pp. 1267-1281
-
-
Liao, S.-P.1
Lin, H.-T.2
Lin, C.-J.3
-
18
-
-
65449173493
-
-
A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Royal Holloway College, London, U.K., NeuroCOLT Tech. Rep. NC-TR-98-030, 1998.
-
A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Royal Holloway College, London, U.K., NeuroCOLT Tech. Rep. NC-TR-98-030, 1998.
-
-
-
-
19
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Sep
-
S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to the SMO algorithm for SVM regression," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1188-1193, Sep. 2000.
-
(2000)
IEEE Trans. Neural Netw
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
20
-
-
0036160859
-
Efficient SVM regression training with SMO
-
G. W. Flake and S. Lawrence, "Efficient SVM regression training with SMO," Mach. Learn., vol. 46, pp. 271-290, 2002.
-
(2002)
Mach. Learn
, vol.46
, pp. 271-290
-
-
Flake, G.W.1
Lawrence, S.2
-
21
-
-
33750600332
-
A novel sequential minimal optimization algorithm for support vector regression
-
Oct
-
J. Guo, N. Takahashi, and T. Nishi, "A novel sequential minimal optimization algorithm for support vector regression," in Lecture Notes in Computer Science, Oct. 2006, vol. 4232, pp. 827-836.
-
(2006)
Lecture Notes in Computer Science
, vol.4232
, pp. 827-836
-
-
Guo, J.1
Takahashi, N.2
Nishi, T.3
-
22
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R.-E. Fan, P.-H. Chen, and C.-J. Lin, "Working set selection using second order information for training support vector machines," J. Mach. Learn. Res., vol. 6, pp. 1889-1918, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
23
-
-
33646392997
-
QP algorithms with guaranteed accuracy and run time for support vector machines
-
D. Hush, P. Kelly, C. Scovel, and I. Steinwart, "QP algorithms with guaranteed accuracy and run time for support vector machines," J. Mach. Learn. Res., vol. 7, pp. 733-769, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 733-769
-
-
Hush, D.1
Kelly, P.2
Scovel, C.3
Steinwart, I.4
-
24
-
-
33745784639
-
Maximum-gain working set selection for SVMs
-
T. Glasmachers and C. Igel, "Maximum-gain working set selection for SVMs," J. Mach. Learn. Res., vol. 7, pp. 1437-1466, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1437-1466
-
-
Glasmachers, T.1
Igel, C.2
-
26
-
-
84870538169
-
-
Online, Available
-
"StatLib-datasets archive," [Online]. Available: http:// lib.stat.cmu.edu/datasets/
-
StatLib-datasets archive
-
-
|