메뉴 건너뛰기




Volumn 23, Issue 2, 2012, Pages 260-276

Adaptive multiregression in reproducing kernel hilbert spaces: The multiaccess MIMO channel case

Author keywords

Adaptive kernel learning; convex analysis; multiple input multiple output channel equalization; projection; regression; subgradient

Indexed keywords

ADAPTIVE KERNELS; CONVEX ANALYSIS; MULTIPLE-INPUT MULTIPLE-OUTPUT CHANNELS; PROJECTION; REGRESSION; SUBGRADIENT;

EID: 84875880314     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2011.2178321     Document Type: Article
Times cited : (30)

References (51)
  • 4
    • 75549091324 scopus 로고    scopus 로고
    • Bounded influence support vector regression for robust single-model estimation
    • Nov
    • F. Dufrenois, J. Colliez, and D. Hamad, "Bounded influence support vector regression for robust single-model estimation," IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1689-1706, Nov. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.11 , pp. 1689-1706
    • Dufrenois, F.1    Colliez, J.2    Hamad, D.3
  • 5
    • 2442593945 scopus 로고    scopus 로고
    • Active set support vector regression
    • Mar
    • D. Musicant and A. Feinberg, "Active set support vector regression," IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 268-275, Mar. 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.2 , pp. 268-275
    • Musicant, D.1    Feinberg, A.2
  • 6
    • 67649378823 scopus 로고    scopus 로고
    • Sparse Bayesian modeling with adaptive kernel learning
    • Jun
    • D. Tzikas, A. Likas, and N. Galatsanos, "Sparse Bayesian modeling with adaptive kernel learning," IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 926-937, Jun. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.6 , pp. 926-937
    • Tzikas, D.1    Likas, A.2    Galatsanos, N.3
  • 7
    • 44349097636 scopus 로고    scopus 로고
    • Symmetric RBF classifier for nonlinear detection in multiple-antenna- aided systems
    • May
    • S. Chen, A. Wolfgang, C. Harris, and L. Hanzo, "Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems," IEEE Trans. Neural Netw., vol. 19, no. 5, pp. 737-745, May 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.5 , pp. 737-745
    • Chen, S.1    Wolfgang, A.2    Harris, C.3    Hanzo, L.4
  • 8
    • 85032751903 scopus 로고    scopus 로고
    • Kernel methods and their potential use in signal processing
    • May
    • F. Pérez-Cruz and O. Bousquet, "Kernel methods and their potential use in signal processing," IEEE Signal Process. Mag., vol. 21, no. 3, pp. 57-65, May 2004.
    • (2004) IEEE Signal Process. Mag , vol.21 , Issue.3 , pp. 57-65
    • Pérez-Cruz, F.1    Bousquet, O.2
  • 9
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • N. Aronszajn, "Theory of reproducing kernels," Trans. Amer. Math. Soc., vol. 68, no. 3, pp. 337-404, 1950.
    • (1950) Trans. Amer. Math. Soc , vol.68 , Issue.3 , pp. 337-404
    • Aronszajn, N.1
  • 10
    • 0000897328 scopus 로고    scopus 로고
    • The kernel adatron algorithm: A fast and simple learning procedure for support vector machines
    • T. Frieß, N. Cristianini, and C. Campbell, "The kernel adatron algorithm: A fast and simple learning procedure for support vector machines," in Proc. Int. Conf. Mach. Learn., 1998, pp. 188-196.
    • (1998) Proc. Int. Conf. Mach. Learn , pp. 188-196
    • Frieß, T.1    Cristianini, N.2    Campbell, C.3
  • 12
    • 0003238552 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • Cambridge, MA: MIT Press
    • G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems, vol. 13. Cambridge, MA: MIT Press, 2000, pp. 409-415.
    • (2000) Advances in Neural Information Processing Systems , vol.13 , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 13
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and applications
    • Dec
    • P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller, "Incremental support vector learning: Analysis, implementation and applications," J. Mach. Learn. Res., vol. 7, pp. 1909-1936, Dec. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Krüger, S.3    Müller, K.-R.4
  • 14
    • 25444522689 scopus 로고    scopus 로고
    • Fast kernel classifiers with online and active learning
    • Sep
    • A. Bordes, S. Ertekin, J. Weston, and L. Bottou, "Fast kernel classifiers with online and active learning," J. Mach. Learn. Res., vol. 6, no. 9, pp. 1579-1619, Sep. 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , Issue.9 , pp. 1579-1619
    • Bordes, A.1    Ertekin, S.2    Weston, J.3    Bottou, L.4
  • 15
    • 33745294113 scopus 로고    scopus 로고
    • Step size adaptation in reproducing kernel Hilbert space
    • Jun
    • S. Vishwanathan, N. Schraudolph, and A. Smola, "Step size adaptation in reproducing kernel Hilbert space," J. Mach. Learn. Res., vol. 7, pp. 1107-1133, Jun. 2006.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 1107-1133
    • Vishwanathan, S.1    Schraudolph, N.2    Smola, A.3
  • 16
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • Nov
    • D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3217-3226, Nov. 2000.
    • (2000) IEEE Trans. Signal Process , vol.48 , Issue.11 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 18
    • 0003807773 scopus 로고    scopus 로고
    • 3rd ed. Englewood Cliffs NJ: Prentice-Hall
    • S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    • (1996) Adaptive Filter Theory
    • Haykin, S.1
  • 20
    • 3543096272 scopus 로고    scopus 로고
    • The kernel recursive least-squares algorithm
    • Aug
    • Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least-squares algorithm," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275-2285, Aug. 2004.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.8 , pp. 2275-2285
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 21
    • 85032752247 scopus 로고    scopus 로고
    • Efficient least squares adaptive algorithms for FIR transversal filtering
    • Jul
    • G.-O. Glentiis, K. Berberidis, and S. Theodoridis, "Efficient least squares adaptive algorithms for FIR transversal filtering," IEEE Signal Process. Mag., vol. 16, no. 4, pp. 13-41, Jul. 1999.
    • (1999) IEEE Signal Process. Mag , vol.16 , Issue.4 , pp. 13-41
    • Glentiis, G.-O.1    Berberidis, K.2    Theodoridis, S.3
  • 22
    • 46749118074 scopus 로고    scopus 로고
    • Online kernel-based classification using adaptive projection algorithms
    • Jul
    • K. Slavakis, S. Theodoridis, and I. Yamada, "Online kernel-based classification using adaptive projection algorithms," IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2781-2796, Jul. 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.7 , pp. 2781-2796
    • Slavakis, K.1    Theodoridis, S.2    Yamada, I.3
  • 23
    • 45749106357 scopus 로고    scopus 로고
    • Sliding window generalized kernel affine projection algorithm using projection mappings
    • K. Slavakis and S. Theodoridis, "Sliding window generalized kernel affine projection algorithm using projection mappings," EURASIP J. Adv. Signal Process., vol. 2008, pp. 1-16, 2008.
    • (2008) EURASIP J. Adv. Signal Process , vol.2008 , pp. 1-16
    • Slavakis, K.1    Theodoridis, S.2
  • 24
    • 70450233513 scopus 로고    scopus 로고
    • Adaptive constrained learning in reproducing kernel Hilbert spaces: The robust beamforming case
    • Dec
    • K. Slavakis, S. Theodoridis, and I. Yamada, "Adaptive constrained learning in reproducing kernel Hilbert spaces: The robust beamforming case," IEEE Trans. Signal Process., vol. 57, no. 12, pp. 4744-4764, Dec. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.12 , pp. 4744-4764
    • Slavakis, K.1    Theodoridis, S.2    Yamada, I.3
  • 25
    • 0036571426 scopus 로고    scopus 로고
    • An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques
    • May
    • I. Yamada, K. Slavakis, and K. Yamada, "An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques," IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1091-1101, May 2002.
    • (2002) IEEE Trans. Signal Process , vol.50 , Issue.5 , pp. 1091-1101
    • Yamada, I.1    Slavakis, K.2    Yamada, K.3
  • 26
    • 4243078179 scopus 로고    scopus 로고
    • Adaptive projected subgradient method: A unified view for projection based adaptive algorithms
    • Aug
    • I. Yamada, "Adaptive projected subgradient method: A unified view for projection based adaptive algorithms," J. IEICE, vol. 86, no. 8, pp. 654-658, Aug. 2003.
    • (2003) J. IEICE , vol.86 , Issue.8 , pp. 654-658
    • Yamada, I.1
  • 27
    • 11144235357 scopus 로고    scopus 로고
    • Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions
    • I. Yamada and N. Ogura, "Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions," Numer. Funct. Anal. Optim., vol. 25, nos. 7-8, pp. 593-617, 2004.
    • (2004) Numer. Funct. Anal. Optim , vol.25 , Issue.7-8 , pp. 593-617
    • Yamada, I.1    Ogura, N.2
  • 28
    • 34547495662 scopus 로고    scopus 로고
    • The adaptive projected subgradient method over the fixed point set of strongly attracting nonexpansive mappings
    • K. Slavakis, I. Yamada, and N. Ogura, "The adaptive projected subgradient method over the fixed point set of strongly attracting nonexpansive mappings," Numer. Funct. Anal. Optim., vol. 27, nos. 7-8, pp. 905-930, 2006.
    • (2006) Numer. Funct. Anal. Optim , vol.27 , Issue.7-8 , pp. 905-930
    • Slavakis, K.1    Yamada, I.2    Ogura, N.3
  • 30
    • 85032752365 scopus 로고    scopus 로고
    • Adaptive learning in a world of projections: A unifying framework for linear and nonlinear classification and regression tasks
    • Jan.
    • S. Theodoridis, K. Slavakis, and I. Yamada, "Adaptive learning in a world of projections: A unifying framework for linear and nonlinear classification and regression tasks," IEEE Signal Process. Mag., vol. 28, no. 1, pp. 97-123, Jan. 2011.
    • (2011) IEEE Signal Process. Mag , vol.28 , Issue.1 , pp. 97-123
    • Theodoridis, S.1    Slavakis, K.2    Yamada, I.3
  • 33
    • 4143079337 scopus 로고    scopus 로고
    • Minimum variance linear receivers for multiaccess MIMO wireless systems with space-time block coding
    • Dec
    • S. Shahbazpanahi, M. Beheshti, A. Gershman, M. Gharavi-Alkhansari, and K. Wong, "Minimum variance linear receivers for multiaccess MIMO wireless systems with space-time block coding," IEEE Trans. Signal Process., vol. 52, no. 12, pp. 3306-3313, Dec. 2004.
    • (2004) IEEE Trans. Signal Process , vol.52 , Issue.12 , pp. 3306-3313
    • Shahbazpanahi, S.1    Beheshti, M.2    Gershman, A.3    Gharavi-Alkhansari, M.4    Wong, K.5
  • 34
    • 40749135005 scopus 로고    scopus 로고
    • Multiaccess interference suppression in orthogonal space-time block coded MIMO systems by adaptive projected subgradient method
    • Mar
    • R. Cavalcante and I. Yamada, "Multiaccess interference suppression in orthogonal space-time block coded MIMO systems by adaptive projected subgradient method," IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1028-1042, Mar. 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.3 , pp. 1028-1042
    • Cavalcante, R.1    Yamada, I.2
  • 35
    • 77951892250 scopus 로고    scopus 로고
    • Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities
    • May
    • M. Chen, S. Ge, and B. How, "Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 796-812, May 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.5 , pp. 796-812
    • Chen, M.1    Ge, S.2    How, B.3
  • 37
    • 18444381761 scopus 로고    scopus 로고
    • Identification of MIMO Hammerstein models using least squares support vector machines
    • Jul
    • I. Goethals, K. Pelckmans, J. Suykens, and B. D. Moor, "Identification of MIMO Hammerstein models using least squares support vector machines," Automatica, vol. 41, no. 7, pp. 1263-1272, Jul. 2005.
    • (2005) Automatica , vol.41 , Issue.7 , pp. 1263-1272
    • Goethals, I.1    Pelckmans, K.2    Suykens, J.3    Moor, B.D.4
  • 38
    • 0032183752 scopus 로고    scopus 로고
    • A simple transmit diversity technique for wireless communications
    • Oct
    • S. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    • (1998) IEEE J. Sel. Areas Commun , vol.16 , Issue.8 , pp. 1451-1458
    • Alamouti, S.1
  • 39
    • 0032656952 scopus 로고    scopus 로고
    • Space-time block codes from orthogonal designs
    • Jul
    • V. Tarokh, H. Jafarkhani, and A. Calderbank, "Space-time block codes from orthogonal designs," IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.
    • (1999) IEEE Trans. Inf. Theory , vol.45 , Issue.5 , pp. 1456-1467
    • Tarokh, V.1    Jafarkhani, H.2    Calderbank, A.3
  • 40
    • 0027541192 scopus 로고
    • The foundations of set theoretic estimation
    • Feb
    • P. L. Combettes, "The foundations of set theoretic estimation," Proc. IEEE, vol. 81, no. 2, pp. 182-208, Feb. 1993.
    • (1993) Proc IEEE , vol.81 , Issue.2 , pp. 182-208
    • Combettes, P.L.1
  • 41
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G. S. Kimeldorf and G. Wahba, "Some results on Tchebycheffian spline functions," J. Math. Anal. Appl., vol. 33, no. 1, pp. 82-95, 1971.
    • (1971) J. Math. Anal. Appl , vol.33 , Issue.1 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 43
  • 46
    • 49849127729 scopus 로고
    • Minimization of unsmooth functionals
    • B. T. Polyak, "Minimization of unsmooth functionals," USSR Comput. Math. Phys., vol. 9, no. 3, pp. 14-29, 1969.
    • (1969) USSR Comput. Math. Phys , vol.9 , Issue.3 , pp. 14-29
    • Polyak, B.T.1
  • 47
    • 0001336448 scopus 로고
    • The method of successive projections for finding a common point of convex sets
    • L. M. Bregman, "The method of successive projections for finding a common point of convex sets," Soviet Math. Dokl., vol. 162, no. 3, pp. 688-692, 1965.
    • (1965) Soviet Math. Dokl , vol.162 , Issue.3 , pp. 688-692
    • Bregman, L.M.1
  • 48
    • 33845708830 scopus 로고
    • The method of projections for finding the common point of convex sets
    • L. G. Gubin, B. T. Polyak, and E. V. Raik, "The method of projections for finding the common point of convex sets," USSR Comput. Math. Phys., vol. 7, no. 6, pp. 1-24, 1967.
    • (1967) USSR Comput. Math. Phys , vol.7 , Issue.6 , pp. 1-24
    • Gubin, L.G.1    Polyak, B.T.2    Raik, E.V.3
  • 49
    • 77950789961 scopus 로고    scopus 로고
    • Multi-domain adaptive learning based on feasibility splitting and adaptive projected subgradient method
    • Feb
    • M. Yukawa, K. Slavakis, and I. Yamada, "Multi-domain adaptive learning based on feasibility splitting and adaptive projected subgradient method," IEICE Trans. Fundam., vol. E93-A, no. 2, pp. 456-466, Feb. 2010.
    • (2010) IEICE Trans. Fundam. , vol.E93-A , Issue.2 , pp. 456-466
    • Yukawa, M.1    Slavakis, K.2    Yamada, I.3
  • 50
    • 79951590814 scopus 로고    scopus 로고
    • Online sparse system identification and signal reconstruction using projections onto weighted-1 balls
    • Mar.
    • Y. Kopsinis, K. Slavakis, and S. Theodoridis, "Online sparse system identification and signal reconstruction using projections onto weighted-1 balls," IEEE Trans. Signal Process., vol. 59, no. 3, pp. 936-952, Mar. 2011.
    • (2011) IEEE Trans. Signal Process , vol.59 , Issue.3 , pp. 936-952
    • Kopsinis, Y.1    Slavakis, K.2    Theodoridis, S.3
  • 51
    • 0035351666 scopus 로고    scopus 로고
    • A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces
    • May
    • H. H. Bauschke and P. L. Combettes, "A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces," Math. Oper. Res., vol. 26, no. 2, pp. 248-264, May 2001.
    • (2001) Math. Oper. Res , vol.26 , Issue.2 , pp. 248-264
    • Bauschke, H.H.1    Combettes, P.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.