-
1
-
-
84866064720
-
The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system
-
Eugenin E.A., et al. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J. Neuroimmune Pharmacol. 2012, 7:499-518.
-
(2012)
J. Neuroimmune Pharmacol.
, vol.7
, pp. 499-518
-
-
Eugenin, E.A.1
-
2
-
-
67749120345
-
The family of connexin genes
-
Humana Press, A. Harris, D. Locke (Eds.)
-
Beyer E.C., Berthoud V.M. The family of connexin genes. Connexins: A Guide 2009, 3-26. Humana Press. A. Harris, D. Locke (Eds.).
-
(2009)
Connexins: A Guide
, pp. 3-26
-
-
Beyer, E.C.1
Berthoud, V.M.2
-
3
-
-
84864332612
-
Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling
-
Rash J.E., et al. Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling. J. Membr. Biol. 2012, 245:333-344.
-
(2012)
J. Membr. Biol.
, vol.245
, pp. 333-344
-
-
Rash, J.E.1
-
4
-
-
77952426247
-
Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system
-
Giaume C., Theis M. Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. Brain Res. Rev. 2010, 63:160-176.
-
(2010)
Brain Res. Rev.
, vol.63
, pp. 160-176
-
-
Giaume, C.1
Theis, M.2
-
5
-
-
0034685704
-
Expression of connexin36 in the adult and developing rat brain
-
Belluardo N., et al. Expression of connexin36 in the adult and developing rat brain. Brain Res. 2000, 865:121-138.
-
(2000)
Brain Res.
, vol.865
, pp. 121-138
-
-
Belluardo, N.1
-
6
-
-
0034730132
-
Connexin expression in electrically coupled postnatal rat brain neurons
-
Venance L., et al. Connexin expression in electrically coupled postnatal rat brain neurons. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:10260-10265.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 10260-10265
-
-
Venance, L.1
-
7
-
-
77955087401
-
Cell membrane permeabilization via connexin hemichannels in living and dying cells
-
Saez J.C., et al. Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp. Cell Res. 2010, 316:2377-2389.
-
(2010)
Exp. Cell Res.
, vol.316
, pp. 2377-2389
-
-
Saez, J.C.1
-
8
-
-
39149102487
-
ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro
-
Schock S.C., et al. ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem. Biophys. Res. Commun. 2008, 368:138-144.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.368
, pp. 138-144
-
-
Schock, S.C.1
-
9
-
-
84855485184
-
Pannexins in ischemia-induced neurodegeneration
-
Bargiotas P., et al. Pannexins in ischemia-induced neurodegeneration. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:20772-20777.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 20772-20777
-
-
Bargiotas, P.1
-
10
-
-
75749152627
-
Non-junction functions of pannexin-1 channels
-
MacVicar B.A., Thompson R.J. Non-junction functions of pannexin-1 channels. Trends Neurosci. 2010, 33:93-102.
-
(2010)
Trends Neurosci.
, vol.33
, pp. 93-102
-
-
MacVicar, B.A.1
Thompson, R.J.2
-
11
-
-
57349160715
-
Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus
-
Thompson R.J., et al. Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 2008, 322:1555-1559.
-
(2008)
Science
, vol.322
, pp. 1555-1559
-
-
Thompson, R.J.1
-
12
-
-
79955717821
-
Pannexin channels are not gap junction hemichannels
-
Sosinsky G.E., et al. Pannexin channels are not gap junction hemichannels. Channels 2011, 5:193-197.
-
(2011)
Channels
, vol.5
, pp. 193-197
-
-
Sosinsky, G.E.1
-
13
-
-
0031926704
-
Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons
-
Condorelli D.F., et al. Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur. J. Neurosci. 1998, 10:1202-1208.
-
(1998)
Eur. J. Neurosci.
, vol.10
, pp. 1202-1208
-
-
Condorelli, D.F.1
-
14
-
-
0032557404
-
The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development
-
Sohl G., et al. The murine gap junction gene connexin36 is highly expressed in mouse retina and regulated during brain development. FEBS Lett. 1998, 428:27-31.
-
(1998)
FEBS Lett.
, vol.428
, pp. 27-31
-
-
Sohl, G.1
-
15
-
-
0034653118
-
Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain
-
Al-Ubaidi M.R., et al. Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. J. Neurosci. Res. 2000, 59:813-826.
-
(2000)
J. Neurosci. Res.
, vol.59
, pp. 813-826
-
-
Al-Ubaidi, M.R.1
-
16
-
-
0033571901
-
Functional properties of channels formed by the neuronal gap junction protein connexin36
-
Srinivas M., et al. Functional properties of channels formed by the neuronal gap junction protein connexin36. J. Neurosci. 1999, 19:9848-9855.
-
(1999)
J. Neurosci.
, vol.19
, pp. 9848-9855
-
-
Srinivas, M.1
-
17
-
-
34547644292
-
Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling
-
Hamzei-Sichani F., et al. Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12548-12553.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 12548-12553
-
-
Hamzei-Sichani, F.1
-
18
-
-
84857712309
-
Trafficking of gap junction channels at a vertebrate electrical synapse in vivo
-
Flores C.E., et al. Trafficking of gap junction channels at a vertebrate electrical synapse in vivo. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E573-E582.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Flores, C.E.1
-
19
-
-
55749108015
-
Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1
-
Li X., et al. Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J. Neurosci. 2008, 28:9769-9789.
-
(2008)
J. Neurosci.
, vol.28
, pp. 9769-9789
-
-
Li, X.1
-
20
-
-
77957875852
-
Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart
-
Frank M., et al. Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart. J. Cell Sci. 2010, 123:3605-3615.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3605-3615
-
-
Frank, M.1
-
21
-
-
84869496995
-
Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells
-
Nagy J.I. Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells. Brain Res. 2012, 1487:107-122.
-
(2012)
Brain Res.
, vol.1487
, pp. 107-122
-
-
Nagy, J.I.1
-
22
-
-
79955161296
-
The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous
-
Hoge G.J., et al. The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J. Neurophysiol. 2011, 105:1089-1101.
-
(2011)
J. Neurophysiol.
, vol.105
, pp. 1089-1101
-
-
Hoge, G.J.1
-
23
-
-
84864838707
-
Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36
-
Hamzei-Sichani F., et al. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36. Front. Neuroanat. 2012, 6:13.
-
(2012)
Front. Neuroanat.
, vol.6
, pp. 13
-
-
Hamzei-Sichani, F.1
-
24
-
-
66049117301
-
ZO-1 and the spatial organization of gap junctions and glutamate receptors in the outer plexiform layer of the mammalian retina
-
Puller C., et al. ZO-1 and the spatial organization of gap junctions and glutamate receptors in the outer plexiform layer of the mammalian retina. J. Neurosci. 2009, 29:6266-6275.
-
(2009)
J. Neurosci.
, vol.29
, pp. 6266-6275
-
-
Puller, C.1
-
25
-
-
84855977044
-
The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain
-
Li X., et al. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur. J. Neurosci. 2012, 35:166-181.
-
(2012)
Eur. J. Neurosci.
, vol.35
, pp. 166-181
-
-
Li, X.1
-
26
-
-
33646495062
-
Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina
-
Ciolofan C., et al. Association of connexin36 and zonula occludens-1 with zonula occludens-2 and the transcription factor zonula occludens-1-associated nucleic acid-binding protein at neuronal gap junctions in rodent retina. Neuroscience 2006, 140:433-451.
-
(2006)
Neuroscience
, vol.140
, pp. 433-451
-
-
Ciolofan, C.1
-
27
-
-
61449254263
-
Direct association of connexin36 with zonula occludens-2 and zonula occludens-3
-
Li X., et al. Direct association of connexin36 with zonula occludens-2 and zonula occludens-3. Neurochem. Int. 2009, 54:393-402.
-
(2009)
Neurochem. Int.
, vol.54
, pp. 393-402
-
-
Li, X.1
-
28
-
-
77955090489
-
In vivo evidence for the involvement of the carboxy terminal domain in assembling connexin 36 at the electrical synapse
-
Helbig I., et al. In vivo evidence for the involvement of the carboxy terminal domain in assembling connexin 36 at the electrical synapse. Mol. Cell. Neurosci. 2010, 45:47-58.
-
(2010)
Mol. Cell. Neurosci.
, vol.45
, pp. 47-58
-
-
Helbig, I.1
-
29
-
-
77954724789
-
2+/calmodulin-dependent kinase II at mixed synapses on the Mauthner cell: colocalization and association with connexin 35
-
2+/calmodulin-dependent kinase II at mixed synapses on the Mauthner cell: colocalization and association with connexin 35. J. Neurosci. 2010, 30:9488-9499.
-
(2010)
J. Neurosci.
, vol.30
, pp. 9488-9499
-
-
Flores, C.E.1
-
30
-
-
58549118713
-
The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors
-
Alev C., et al. The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:20964-20969.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 20964-20969
-
-
Alev, C.1
-
31
-
-
80054844695
-
Behavioral alterations and changes in Ca/calmodulin kinase II levels in the striatum of connexin36 deficient mice
-
Zlomuzica A., et al. Behavioral alterations and changes in Ca/calmodulin kinase II levels in the striatum of connexin36 deficient mice. Behav. Brain Res. 2012, 226:293-300.
-
(2012)
Behav. Brain Res.
, vol.226
, pp. 293-300
-
-
Zlomuzica, A.1
-
32
-
-
34548501240
-
Connexin 35/36 is phosphorylated at regulatory sites in the retina
-
Kothmann W.W., et al. Connexin 35/36 is phosphorylated at regulatory sites in the retina. Vis. Neurosci. 2007, 24:363-375.
-
(2007)
Vis. Neurosci.
, vol.24
, pp. 363-375
-
-
Kothmann, W.W.1
-
33
-
-
33646104421
-
Regulation of gap junction coupling through the neuronal connexin Cx35 by nitric oxide and cGMP
-
Patel L.S., et al. Regulation of gap junction coupling through the neuronal connexin Cx35 by nitric oxide and cGMP. Cell Commun. Adhes. 2006, 13:41-54.
-
(2006)
Cell Commun. Adhes.
, vol.13
, pp. 41-54
-
-
Patel, L.S.1
-
34
-
-
33845961237
-
Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells
-
Urschel S., et al. Protein kinase A-mediated phosphorylation of connexin36 in mouse retina results in decreased gap junctional communication between AII amacrine cells. J. Biol. Chem. 2006, 281:33163-33171.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 33163-33171
-
-
Urschel, S.1
-
35
-
-
72449136186
-
Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling
-
Kothmann W.W., et al. Dopamine-stimulated dephosphorylation of connexin 36 mediates AII amacrine cell uncoupling. J. Neurosci. 2009, 29:14903-14911.
-
(2009)
J. Neurosci.
, vol.29
, pp. 14903-14911
-
-
Kothmann, W.W.1
-
36
-
-
84861634571
-
Gap junctional channels are parts of multiprotein complexes
-
Herve J.C., et al. Gap junctional channels are parts of multiprotein complexes. Biochim. Biophys. Acta 2012, 1818:1844-1865.
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 1844-1865
-
-
Herve, J.C.1
-
37
-
-
28044453528
-
NMDA receptors regulate developmental gap junction uncoupling via CREB signaling
-
Arumugam H., et al. NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat. Neurosci. 2005, 8:1720-1726.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 1720-1726
-
-
Arumugam, H.1
-
38
-
-
79955752342
-
Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses
-
Park W-M., et al. Interplay of chemical neurotransmitters regulates developmental increase in electrical synapses. J. Neurosci. 2011, 31:5909-5920.
-
(2011)
J. Neurosci.
, vol.31
, pp. 5909-5920
-
-
Park, W.-M.1
-
39
-
-
0036849566
-
Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats
-
Mentis G.Z., et al. Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats. J. Physiol. 2002, 544:757-764.
-
(2002)
J. Physiol.
, vol.544
, pp. 757-764
-
-
Mentis, G.Z.1
-
40
-
-
0037322860
-
Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat
-
Pastor A.M., et al. Increased electrotonic coupling in spinal motoneurons after transient botulinum neurotoxin paralysis in the neonatal rat. J. Neurophysiol. 2003, 89:793-805.
-
(2003)
J. Neurophysiol.
, vol.89
, pp. 793-805
-
-
Pastor, A.M.1
-
41
-
-
0020540679
-
Coupling between neurons of the developing rat neocortex
-
Connors B.W., et al. Coupling between neurons of the developing rat neocortex. J. Neurosci. 1983, 3:773-782.
-
(1983)
J. Neurosci.
, vol.3
, pp. 773-782
-
-
Connors, B.W.1
-
42
-
-
0037104767
-
In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons
-
Meyer A.H., et al. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 2002, 22:7055-7064.
-
(2002)
J. Neurosci.
, vol.22
, pp. 7055-7064
-
-
Meyer, A.H.1
-
43
-
-
0031016827
-
A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus
-
Strata F., et al. A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus. J. Neurosci. 1997, 17:1435-1446.
-
(1997)
J. Neurosci.
, vol.17
, pp. 1435-1446
-
-
Strata, F.1
-
44
-
-
4444233857
-
Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices
-
Venance L., et al. Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices. J. Physiol. 2004, 559:215-230.
-
(2004)
J. Physiol.
, vol.559
, pp. 215-230
-
-
Venance, L.1
-
45
-
-
77954489742
-
Electrical and chemical synapses between relay neurons in developing thalamus
-
Lee S.C., et al. Electrical and chemical synapses between relay neurons in developing thalamus. J. Physiol. 2010, 588:2403-2415.
-
(2010)
J. Physiol.
, vol.588
, pp. 2403-2415
-
-
Lee, S.C.1
-
46
-
-
0027064754
-
Anatomical and electrotonic coupling in developing genioglossal motoneurons of the rat
-
Mazza E., et al. Anatomical and electrotonic coupling in developing genioglossal motoneurons of the rat. Brain Res. 1992, 598:127-137.
-
(1992)
Brain Res.
, vol.598
, pp. 127-137
-
-
Mazza, E.1
-
47
-
-
17344389332
-
Functional coupling between neurons and glia
-
Alvarez-Maubecin V., et al. Functional coupling between neurons and glia. J. Neurosci. 2000, 20:4091-4098.
-
(2000)
J. Neurosci.
, vol.20
, pp. 4091-4098
-
-
Alvarez-Maubecin, V.1
-
48
-
-
34547425746
-
Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination
-
Personius K.E., et al. Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:11808-11813.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 11808-11813
-
-
Personius, K.E.1
-
49
-
-
84861954572
-
Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly
-
Yu Y.C., et al. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 2012, 486:113-117.
-
(2012)
Nature
, vol.486
, pp. 113-117
-
-
Yu, Y.C.1
-
50
-
-
84920070287
-
Electrical signaling with neuronal gap junctions
-
Humana Press, A. Harris, D. Locke (Eds.)
-
Connors B.W. Electrical signaling with neuronal gap junctions. Connexins: A Guide 2009, 143-164. Humana Press. A. Harris, D. Locke (Eds.).
-
(2009)
Connexins: A Guide
, pp. 143-164
-
-
Connors, B.W.1
-
51
-
-
20144370710
-
Electrical synapses define networks of neocortical GABAergic neurons
-
Hestrin S., Galarreta M. Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 2005, 28:304-309.
-
(2005)
Trends Neurosci.
, vol.28
, pp. 304-309
-
-
Hestrin, S.1
Galarreta, M.2
-
52
-
-
68549113187
-
Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology
-
Parker P.R., et al. Stability of electrical coupling despite massive developmental changes of intrinsic neuronal physiology. J. Neurosci. 2009, 29:9761-9770.
-
(2009)
J. Neurosci.
, vol.29
, pp. 9761-9770
-
-
Parker, P.R.1
-
53
-
-
84859087298
-
Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus
-
Curti S., et al. Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J. Neurosci. 2012, 32:4341-4359.
-
(2012)
J. Neurosci.
, vol.32
, pp. 4341-4359
-
-
Curti, S.1
-
54
-
-
26444534382
-
Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia
-
de Pina-Benabou M.H., et al. Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 2005, 36:2232-2237.
-
(2005)
Stroke
, vol.36
, pp. 2232-2237
-
-
de Pina-Benabou, M.H.1
-
55
-
-
0035478279
-
Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice
-
Oguro K., et al. Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J. Neurosci. 2001, 21:7534-7542.
-
(2001)
J. Neurosci.
, vol.21
, pp. 7534-7542
-
-
Oguro, K.1
-
56
-
-
84862908081
-
Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury
-
Wang Y., et al. Neuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury. J. Neurosci. 2012, 32:713-725.
-
(2012)
J. Neurosci.
, vol.32
, pp. 713-725
-
-
Wang, Y.1
-
57
-
-
0034651094
-
Nerve injury induces gap junctional coupling among axotomized adult motor neurons
-
Chang Q., et al. Nerve injury induces gap junctional coupling among axotomized adult motor neurons. J. Neurosci. 2000, 20:674-684.
-
(2000)
J. Neurosci.
, vol.20
, pp. 674-684
-
-
Chang, Q.1
-
58
-
-
0036470097
-
Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury
-
Frantseva M.V., et al. Specific gap junctions enhance the neuronal vulnerability to brain traumatic injury. J. Neurosci. 2002, 22:644-653.
-
(2002)
J. Neurosci.
, vol.22
, pp. 644-653
-
-
Frantseva, M.V.1
-
59
-
-
78650172078
-
Alteration of gap junction proteins (connexins) following lateral fluid percussion injury in rats
-
Ohsumi A., et al. Alteration of gap junction proteins (connexins) following lateral fluid percussion injury in rats. Acta Neurochir. Suppl. 2006, 96:148-150.
-
(2006)
Acta Neurochir. Suppl.
, vol.96
, pp. 148-150
-
-
Ohsumi, A.1
-
60
-
-
23944511154
-
Loss of connexin36 increases retinal cell vulnerability to secondary cell loss
-
Striedinger K., et al. Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. Eur. J. Neurosci. 2005, 22:605-616.
-
(2005)
Eur. J. Neurosci.
, vol.22
, pp. 605-616
-
-
Striedinger, K.1
-
61
-
-
0346103733
-
Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo
-
Gajda Z., et al. Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo. Epilepsia 2003, 44:1596-1600.
-
(2003)
Epilepsia
, vol.44
, pp. 1596-1600
-
-
Gajda, Z.1
-
62
-
-
0028343428
-
Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis
-
Perez Velazquez J.L., et al. Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J. Neurosci. 1994, 14:4308-4317.
-
(1994)
J. Neurosci.
, vol.14
, pp. 4308-4317
-
-
Perez Velazquez, J.L.1
-
63
-
-
77949653004
-
Differential expression of connexins in trigeminal ganglion neurons and satellite glial cells in response to chronic or acute joint inflammation
-
Garrett F.G., Durham P.L. Differential expression of connexins in trigeminal ganglion neurons and satellite glial cells in response to chronic or acute joint inflammation. Neuron Glia Biol. 2008, 4:295-306.
-
(2008)
Neuron Glia Biol.
, vol.4
, pp. 295-306
-
-
Garrett, F.G.1
Durham, P.L.2
-
64
-
-
0035371032
-
Developing networks play a similar melody
-
Ben-Ari Y. Developing networks play a similar melody. Trends Neurosci. 2001, 24:353-360.
-
(2001)
Trends Neurosci.
, vol.24
, pp. 353-360
-
-
Ben-Ari, Y.1
-
65
-
-
84862799098
-
Regulation of connexin 36 expression during development
-
Song J-H., et al. Regulation of connexin 36 expression during development. Neurosci. Lett. 2012, 513:17-19.
-
(2012)
Neurosci. Lett.
, vol.513
, pp. 17-19
-
-
Song, J.-H.1
-
66
-
-
0031890833
-
Relationship between dye coupling and spontaneous activity in developing ferret visual cortex
-
Kandler K., Katz L.C. Relationship between dye coupling and spontaneous activity in developing ferret visual cortex. Dev. Neurosci. 1998, 20:59-64.
-
(1998)
Dev. Neurosci.
, vol.20
, pp. 59-64
-
-
Kandler, K.1
Katz, L.C.2
-
67
-
-
0034112165
-
Neurotransmitters and gap junctions in developing neural circuits
-
Roerig B., Feller M.B. Neurotransmitters and gap junctions in developing neural circuits. Brain Res. Brain Res. Rev. 2000, 32:86-114.
-
(2000)
Brain Res. Brain Res. Rev.
, vol.32
, pp. 86-114
-
-
Roerig, B.1
Feller, M.B.2
-
68
-
-
39749096553
-
Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus
-
Zsiros V., Maccaferri G. Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J. Neurosci. 2008, 28:1804-1815.
-
(2008)
J. Neurosci.
, vol.28
, pp. 1804-1815
-
-
Zsiros, V.1
Maccaferri, G.2
-
69
-
-
0030571593
-
Cortical afferents modulate striatal gap junction permeability via nitric oxide
-
O'Donnell P., Grace A.A. Cortical afferents modulate striatal gap junction permeability via nitric oxide. Neuroscience 1997, 76:1-5.
-
(1997)
Neuroscience
, vol.76
, pp. 1-5
-
-
O'Donnell, P.1
Grace, A.A.2
-
70
-
-
0037110468
-
Histamine H1-receptor modulation of inter-neuronal coupling among vasopressinergic neurons depends on nitric oxide synthase activation
-
Yang Q.Z., Hatton G.I. Histamine H1-receptor modulation of inter-neuronal coupling among vasopressinergic neurons depends on nitric oxide synthase activation. Brain Res. 2002, 955:115-122.
-
(2002)
Brain Res.
, vol.955
, pp. 115-122
-
-
Yang, Q.Z.1
Hatton, G.I.2
-
71
-
-
0027268561
-
Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens
-
O'Donnell P., Grace A.A. Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens. J. Neurosci. 1993, 13:3456-3471.
-
(1993)
J. Neurosci.
, vol.13
, pp. 3456-3471
-
-
O'Donnell, P.1
Grace, A.A.2
-
72
-
-
67649476102
-
The diverse functional roles and regulation of neuronal gap junctions in the retina
-
Bloomfield S.A., Volgyi B. The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat. Rev. Neurosci. 2009, 10:495-506.
-
(2009)
Nat. Rev. Neurosci.
, vol.10
, pp. 495-506
-
-
Bloomfield, S.A.1
Volgyi, B.2
-
73
-
-
37049010293
-
Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids
-
Cachope R., et al. Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids. Neuron 2007, 56:1034-1047.
-
(2007)
Neuron
, vol.56
, pp. 1034-1047
-
-
Cachope, R.1
-
74
-
-
29144522227
-
Long-term modulation of electrical synapses in the mammalian thalamus
-
Landisman C.E., Connors B.W. Long-term modulation of electrical synapses in the mammalian thalamus. Science 2005, 310:1809-1813.
-
(2005)
Science
, vol.310
, pp. 1809-1813
-
-
Landisman, C.E.1
Connors, B.W.2
-
75
-
-
80051785541
-
Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP
-
Wang Y., Belousov A.B. Deletion of neuronal gap junction protein connexin 36 impairs hippocampal LTP. Neurosci. Lett. 2011, 502:30-32.
-
(2011)
Neurosci. Lett.
, vol.502
, pp. 30-32
-
-
Wang, Y.1
Belousov, A.B.2
-
76
-
-
80051999567
-
Electrical synapses formed by connexin36 regulate inhibition- and experience-dependent plasticity
-
Postma F., et al. Electrical synapses formed by connexin36 regulate inhibition- and experience-dependent plasticity. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:13770-13775.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 13770-13775
-
-
Postma, F.1
-
77
-
-
0035895728
-
Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model
-
Guyot L.L., et al. Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model. Neurosci. Lett. 2001, 299:37-40.
-
(2001)
Neurosci. Lett.
, vol.299
, pp. 37-40
-
-
Guyot, L.L.1
-
78
-
-
0036120226
-
Release of excitatory amino acids in the penumbra of a focal cortical necrosis
-
Stoffel M., et al. Release of excitatory amino acids in the penumbra of a focal cortical necrosis. J. Neurotrauma 2002, 19:467-477.
-
(2002)
J. Neurotrauma
, vol.19
, pp. 467-477
-
-
Stoffel, M.1
-
79
-
-
79952413737
-
Connexin 36 expression regulates neuronal differentiation from neural progenitor cells
-
Hartfield E.M., et al. Connexin 36 expression regulates neuronal differentiation from neural progenitor cells. PLoS ONE 2011, 6:e14746.
-
(2011)
PLoS ONE
, vol.6
-
-
Hartfield, E.M.1
-
80
-
-
35548986536
-
Expression of connexins in embryonic mouse neocortical development
-
Cina C., et al. Expression of connexins in embryonic mouse neocortical development. J. Comp. Neurol. 2007, 504:298-313.
-
(2007)
J. Comp. Neurol.
, vol.504
, pp. 298-313
-
-
Cina, C.1
-
81
-
-
57749196754
-
Cellular mechanisms of subplate-driven and cholinergic input-dependent network activity in the neonatal rat somatosensory cortex
-
Hanganu I.L., et al. Cellular mechanisms of subplate-driven and cholinergic input-dependent network activity in the neonatal rat somatosensory cortex. Cereb. Cortex 2009, 19:89-105.
-
(2009)
Cereb. Cortex
, vol.19
, pp. 89-105
-
-
Hanganu, I.L.1
-
82
-
-
70349736173
-
Experience-dependent maturation of the glomerular microcircuit
-
Maher B.J., et al. Experience-dependent maturation of the glomerular microcircuit. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:16865-16870.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 16865-16870
-
-
Maher, B.J.1
-
83
-
-
0032519647
-
Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication
-
Kandler K., Katz L.C. Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication. J. Neurosci. 1998, 18:1419-1427.
-
(1998)
J. Neurosci.
, vol.18
, pp. 1419-1427
-
-
Kandler, K.1
Katz, L.C.2
-
84
-
-
0037779295
-
Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level
-
De Zeeuw C.I., et al. Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. J. Neurosci. 2003, 23:4700-4711.
-
(2003)
J. Neurosci.
, vol.23
, pp. 4700-4711
-
-
De Zeeuw, C.I.1
-
85
-
-
0035899305
-
Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36
-
Deans M.R., et al. Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 2001, 31:477-485.
-
(2001)
Neuron
, vol.31
, pp. 477-485
-
-
Deans, M.R.1
-
86
-
-
0035899375
-
Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice
-
Hormuzdi S.G., et al. Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice. Neuron 2001, 31:487-495.
-
(2001)
Neuron
, vol.31
, pp. 487-495
-
-
Hormuzdi, S.G.1
-
87
-
-
0036623895
-
Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice
-
Maier N., et al. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. J. Physiol. 2002, 541:521-528.
-
(2002)
J. Physiol.
, vol.541
, pp. 521-528
-
-
Maier, N.1
-
88
-
-
0037114978
-
Rhythmicity without synchrony in the electrically uncoupled inferior olive
-
Long M.A., et al. Rhythmicity without synchrony in the electrically uncoupled inferior olive. J. Neurosci. 2002, 22:10898-10905.
-
(2002)
J. Neurosci.
, vol.22
, pp. 10898-10905
-
-
Long, M.A.1
-
89
-
-
0036469370
-
Electrical synapses in the thalamic reticular nucleus
-
Landisman C.E., et al. Electrical synapses in the thalamic reticular nucleus. J. Neurosci. 2002, 22:1002-1009.
-
(2002)
J. Neurosci.
, vol.22
, pp. 1002-1009
-
-
Landisman, C.E.1
-
90
-
-
33646922574
-
Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36
-
Placantonakis D.G., et al. Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36. J. Neurosci. 2006, 26:5008-5016.
-
(2006)
J. Neurosci.
, vol.26
, pp. 5008-5016
-
-
Placantonakis, D.G.1
-
91
-
-
36549053131
-
Altered olivocerebellar activity patterns in the connexin36 knockout mouse
-
Marshall S.P., et al. Altered olivocerebellar activity patterns in the connexin36 knockout mouse. Cerebellum 2007, 6:287-299.
-
(2007)
Cerebellum
, vol.6
, pp. 287-299
-
-
Marshall, S.P.1
-
92
-
-
77955447696
-
Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input
-
Vervaeke K., et al. Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 2010, 67:435-451.
-
(2010)
Neuron
, vol.67
, pp. 435-451
-
-
Vervaeke, K.1
-
93
-
-
16644403625
-
Electrical synapses coordinate activity in the suprachiasmatic nucleus
-
Long M.A., et al. Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat. Neurosci. 2005, 8:61-66.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 61-66
-
-
Long, M.A.1
-
94
-
-
0037079080
-
Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina
-
Deans M.R., et al. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 2002, 36:703-712.
-
(2002)
Neuron
, vol.36
, pp. 703-712
-
-
Deans, M.R.1
-
95
-
-
0035882492
-
Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36
-
Guldenagel M., et al. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J. Neurosci. 2001, 21:6036-6044.
-
(2001)
J. Neurosci.
, vol.21
, pp. 6036-6044
-
-
Guldenagel, M.1
-
96
-
-
34250333393
-
Brain stimulation reward is integrated by a network of electrically coupled GABA neurons
-
Lassen M.B., et al. Brain stimulation reward is integrated by a network of electrically coupled GABA neurons. Brain Res. 2007, 1156:46-58.
-
(2007)
Brain Res.
, vol.1156
, pp. 46-58
-
-
Lassen, M.B.1
-
97
-
-
79955762526
-
Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory
-
Allen K., et al. Gap junctions between interneurons are required for normal spatial coding in the hippocampus and short-term spatial memory. J. Neurosci. 2011, 31:6542-6552.
-
(2011)
J. Neurosci.
, vol.31
, pp. 6542-6552
-
-
Allen, K.1
-
98
-
-
11144249412
-
Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice
-
Frisch C., et al. Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice. Behav. Brain Res. 2005, 157:177-185.
-
(2005)
Behav. Brain Res.
, vol.157
, pp. 177-185
-
-
Frisch, C.1
-
99
-
-
48249111378
-
Neuronal coupling via connexin36 contributes to spontaneous synaptic currents of striatal medium-sized spiny neurons
-
Cummings D.M., et al. Neuronal coupling via connexin36 contributes to spontaneous synaptic currents of striatal medium-sized spiny neurons. J. Neurosci. Res. 2008, 86:2147-2158.
-
(2008)
J. Neurosci. Res.
, vol.86
, pp. 2147-2158
-
-
Cummings, D.M.1
-
100
-
-
78650864055
-
Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke
-
Wang Y., et al. Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J. Neurophysiol. 2010, 104:3551-3556.
-
(2010)
J. Neurophysiol.
, vol.104
, pp. 3551-3556
-
-
Wang, Y.1
-
101
-
-
0034079429
-
Apoptosis in neural development and disease
-
Nijhawan D., et al. Apoptosis in neural development and disease. Annu. Rev. Neurosci. 2000, 23:73-87.
-
(2000)
Annu. Rev. Neurosci.
, vol.23
, pp. 73-87
-
-
Nijhawan, D.1
-
102
-
-
7044231118
-
Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus
-
Adams S.M., et al. Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus. J. Neurosci. 2004, 24:9441-9450.
-
(2004)
J. Neurosci.
, vol.24
, pp. 9441-9450
-
-
Adams, S.M.1
-
103
-
-
0036112347
-
Mechanisms of hypoxic neurodegeneration in the developing brain
-
Johnston M.V., et al. Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist 2002, 8:212-220.
-
(2002)
Neuroscientist
, vol.8
, pp. 212-220
-
-
Johnston, M.V.1
-
104
-
-
1842558602
-
Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury
-
Arundine M., Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell. Mol. Life Sci. 2004, 61:657-668.
-
(2004)
Cell. Mol. Life Sci.
, vol.61
, pp. 657-668
-
-
Arundine, M.1
Tymianski, M.2
-
105
-
-
34250731169
-
Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies
-
Hazell A.S. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem. Int. 2007, 50:941-953.
-
(2007)
Neurochem. Int.
, vol.50
, pp. 941-953
-
-
Hazell, A.S.1
-
106
-
-
0036159649
-
Blocked gap junctional coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures
-
Ozog M.A., et al. Blocked gap junctional coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures. J. Neuropathol. Exp. Neurol. 2002, 61:132-141.
-
(2002)
J. Neuropathol. Exp. Neurol.
, vol.61
, pp. 132-141
-
-
Ozog, M.A.1
-
107
-
-
84864631465
-
Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact
-
Belousov A.B., et al. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact. Neurosci. Lett. 2012, 524:16-19.
-
(2012)
Neurosci. Lett.
, vol.524
, pp. 16-19
-
-
Belousov, A.B.1
-
108
-
-
0041842653
-
Gap junctions mediate bystander cell death in developing retina
-
Cusato K., et al. Gap junctions mediate bystander cell death in developing retina. J. Neurosci. 2003, 23:6413-6422.
-
(2003)
J. Neurosci.
, vol.23
, pp. 6413-6422
-
-
Cusato, K.1
-
109
-
-
36249008549
-
Gap junctions are required for NMDA receptor-dependent cell death in developing neurons
-
de Rivero Vaccari J.C., et al. Gap junctions are required for NMDA receptor-dependent cell death in developing neurons. J. Neurophysiol. 2007, 98:2878-2886.
-
(2007)
J. Neurophysiol.
, vol.98
, pp. 2878-2886
-
-
de Rivero Vaccari, J.C.1
-
110
-
-
0036209262
-
Ischemia-induced brain damage depends on specific gap-junctional coupling
-
Frantseva M.V., et al. Ischemia-induced brain damage depends on specific gap-junctional coupling. J. Cereb. Blood Flow Metab. 2002, 22:453-462.
-
(2002)
J. Cereb. Blood Flow Metab.
, vol.22
, pp. 453-462
-
-
Frantseva, M.V.1
-
111
-
-
62849117060
-
Connexin-related signaling in cell death: to live or let die?
-
Decrock E., et al. Connexin-related signaling in cell death: to live or let die?. Cell Death Differ. 2009, 16:524-536.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 524-536
-
-
Decrock, E.1
-
112
-
-
0141676771
-
Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?
-
Ikonomidou C., Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?. Lancet Neurol. 2002, 1:383-386.
-
(2002)
Lancet Neurol.
, vol.1
, pp. 383-386
-
-
Ikonomidou, C.1
Turski, L.2
-
113
-
-
84856153262
-
Connexin hemichannel blockade improves outcomes in a model of fetal ischemia
-
Davidson J.O., et al. Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann. Neurol. 2012, 71:121-132.
-
(2012)
Ann. Neurol.
, vol.71
, pp. 121-132
-
-
Davidson, J.O.1
-
114
-
-
37349015898
-
Expression of connexin30.2 in interneurons of the central nervous system in the mouse
-
Kreuzberg M.M., et al. Expression of connexin30.2 in interneurons of the central nervous system in the mouse. Mol. Cell. Neurosci. 2008, 37:119-134.
-
(2008)
Mol. Cell. Neurosci.
, vol.37
, pp. 119-134
-
-
Kreuzberg, M.M.1
-
115
-
-
42749091132
-
Connexin31.1 deficiency in the mouse impairs object memory and modulates open-field exploration, acetylcholine esterase levels in the striatum, and cAMP response element-binding protein levels in the striatum and piriform cortex
-
Dere E., et al. Connexin31.1 deficiency in the mouse impairs object memory and modulates open-field exploration, acetylcholine esterase levels in the striatum, and cAMP response element-binding protein levels in the striatum and piriform cortex. Neuroscience 2008, 153:396-405.
-
(2008)
Neuroscience
, vol.153
, pp. 396-405
-
-
Dere, E.1
|