메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Reducing overfitting of adaboost by clustering-based pruning of hard examples

Author keywords

Adaboost; Clustering; Hard to learn samples; Overfitting

Indexed keywords

ADABOOST ALGORITHM; BASE CLASSIFIERS; CLUSTERING; HARD-TO-LEARN SAMPLES; K-MEANS CLUSTERING; OVER FITTING PROBLEM; OVERFITTING;

EID: 84875846159     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2448556.2448646     Document Type: Conference Paper
Times cited : (4)

References (13)
  • 1
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Mar. 1997
    • Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 1 (Mar. 1997), 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 2
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Dec. 1999
    • Schapire, R. E. 1999. Improved boosting algorithms using confidence-rated predictions. Journal of Machine Learning, 37, 3 (Dec. 1999), 297-336.
    • (1999) Journal of Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1
  • 4
    • 33947281306 scopus 로고    scopus 로고
    • Does boosting overfit: Views from an exact solution
    • Northwestern University
    • Jiang, W. 2000. Does boosting overfit: views from an exact solution. Technical Report. Department of Statistics, Northwestern University.
    • (2000) Technical Report. Department of Statistics
    • Jiang, W.1
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees : Bagging, boosting, and randomization
    • Aug. 2000
    • Dietterich, T. G. 2000. An experimental comparison of three methods for constructing ensembles of decision trees : bagging, boosting, and randomization. Journal of Machine Learning, 40, 2 (Aug. 2000), 139-157.
    • (2000) Journal of Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 8
    • 78649915712 scopus 로고    scopus 로고
    • Edited adaBoost by weighted kNN
    • October, 2010
    • Gao, Y. and Gao, F. 2010. Edited adaBoost by weighted kNN. Neurocomputing, 73, 16-18 (October, 2010), 3079- 3088.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3079-3088
    • Gao, Y.1    Gao, F.2
  • 9
    • 84864290253 scopus 로고    scopus 로고
    • A noise-detection based AdaBoost algorithm for mislabeled data
    • December, 2012
    • Cao, J., Kwong, S. and Wang, R. 2012. A noise-detection based AdaBoost algorithm for mislabeled data. Pattern Recognition, 45, 12 (December, 2012), 4451-4465.
    • (2012) Pattern Recognition , vol.45 , Issue.12 , pp. 4451-4465
    • Cao, J.1    Kwong, S.2    Wang, R.3
  • 10
    • 38049184914 scopus 로고    scopus 로고
    • Avoiding boosting overfitting by removing confusing samples
    • (The Warsaw, The Poland, September 17 - 21), 2007
    • Vezhnevets, A. and Barinova, O. 2007. Avoiding boosting overfitting by removing confusing samples. In Proceedings of the 18th European Conference on Machine Learning (The Warsaw, The Poland, September 17 - 21, 2007). 430-441.
    • (2007) Proceedings of the 18th European Conference on Machine Learning , pp. 430-441
    • Vezhnevets, A.1    Barinova, O.2
  • 11
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • (The California, The USA, June 21-July 18, 1965 and December 27, 1965-January 7), 1966
    • MacQueen, J. B. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability (The California, The USA, June 21-July 18, 1965 and December 27, 1965-January 7, 1966). 281-297.
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , pp. 281-297
    • MacQueen, J.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.