메뉴 건너뛰기




Volumn 92, Issue 1, 2012, Pages 259-269

Bayesian compressive sensing for cluster structured sparse signals

Author keywords

Cluster structured sparse signals; Compressive sensing; Hierarchical Bayesian model; MCMC

Indexed keywords

CLUSTERED STRUCTURE; COMPRESSIVE SENSING; FREQUENCY DOMAINS; HIERARCHICAL BAYESIAN MODEL; HIERARCHICAL BAYESIAN MODELS; MARKOV CHAIN MONTE CARLO; MCMC; NUMBER OF CLUSTERS; PRIOR INFORMATION; SPARSE PRIOR; SPARSE SIGNALS; STATE-OF-THE-ART ALGORITHMS; TREE STRUCTURES; WAVELET COEFFICIENTS;

EID: 80052297409     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2011.07.015     Document Type: Article
Times cited : (182)

References (35)
  • 1
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • DOI 10.1109/TIT.2005.858979
    • E.J. Candès, and T. Tao Decoding by linear programming IEEE Trans. Inf. Theory 51 12 2005 4203 4215 (Pubitemid 41800353)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 2
  • 3
    • 85032751965 scopus 로고    scopus 로고
    • Compressive sensing [Lecture Notes]
    • R.G. Baraniuk Compressive sensing [Lecture Notes] IEEE Signal. Process. Mag. 24 4 2007 118 121
    • (2007) IEEE Signal. Process. Mag. , vol.24 , Issue.4 , pp. 118-121
    • Baraniuk, R.G.1
  • 4
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D.L. Donoho Compressed sensing IEEE Trans. Inf. Theory 52 4 2006 1289 1306
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 5
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • DOI 10.1109/TIT.2006.885507
    • E.J. Candès, and T. Tao Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52 12 2006 5406 5425 (Pubitemid 46445381)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 7
    • 51449111119 scopus 로고    scopus 로고
    • Iteratively reweighted algorithms for compressive sensing
    • R. Chartrand, W. Yin, Iteratively reweighted algorithms for compressive sensing, in: ICASSP, 2008.
    • (2008) ICASSP
    • Chartrand, R.1    Yin, W.2
  • 8
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C. De Mol An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math. 57 11 2004 1413 1457 (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 9
    • 64549135334 scopus 로고    scopus 로고
    • Sampling theorems for signals from the union of finite-dimensional linear subspaces
    • T. Blumensath, and M.E. Davies Sampling theorems for signals from the union of finite-dimensional linear subspaces IEEE Trans. Inf. Theory 55 4 2009 1872 1882
    • (2009) IEEE Trans. Inf. Theory , vol.55 , Issue.4 , pp. 1872-1882
    • Blumensath, T.1    Davies, M.E.2
  • 13
    • 77952576986 scopus 로고    scopus 로고
    • Block-sparse signals: Uncertainty relations and efficient recovery
    • Y.C. Eldar, P. Kuppinger, and H. Bolcskei Block-sparse signals: uncertainty relations and efficient recovery IEEE Trans. Signal Process. 58 6 2010 3042 3054
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.6 , pp. 3042-3054
    • Eldar, Y.C.1    Kuppinger, P.2    Bolcskei, H.3
  • 14
    • 69349089478 scopus 로고    scopus 로고
    • Exploiting structure in wavelet-based Bayesian compressive sensing
    • L. He, and L. Carin Exploiting structure in wavelet-based Bayesian compressive sensing IEEE Trans. Signal. Process. 57 9 2009 3488 3497
    • (2009) IEEE Trans. Signal. Process. , vol.57 , Issue.9 , pp. 3488-3497
    • He, L.1    Carin, L.2
  • 15
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J.A. Tropp, and A.C. Gilbert Signal recovery from random measurements via orthogonal matching pursuit IEEE Trans. Inf. Theory 53 12 2007 4655 4666
    • (2007) IEEE Trans. Inf. Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 18
  • 19
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • M.E. Tipping Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 1 2001 211 244 (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 23
    • 0020126947 scopus 로고
    • Maximum likelihood detection and estimation of Bernoulli-Gaussian processes
    • J. Kormylo, and J. Mendel Maximum likelihood detection and estimation of BernoulliGaussian processes IEEE Trans. Inf. Theory 28 3 1982 482 488 (Pubitemid 12524011)
    • (1982) IEEE Transactions on Information Theory , vol.IT-28 , Issue.3 , pp. 482-488
    • Kormylo John, J.1    Mendel Jerry, M.2
  • 24
    • 0025491232 scopus 로고
    • Stack algorithm for recursive deconvolution of BernoulliGaussian processes
    • J. Idier, and Y. Goussard Stack algorithm for recursive deconvolution of BernoulliGaussian processes IEEE Trans. Geosci. Remote 28 5 1990 975 978
    • (1990) IEEE Trans. Geosci. Remote , vol.28 , Issue.5 , pp. 975-978
    • Idier, J.1    Goussard, Y.2
  • 25
    • 0031101750 scopus 로고    scopus 로고
    • Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes
    • PII S0165168496001922
    • A. Doucet, and P. Duvaut Bayesian estimation of state-space models applied to deconvolution of BernoulliGaussian processes Signal Process. 57 2 1997 147 161 (Pubitemid 127403390)
    • (1997) Signal Processing , vol.57 , Issue.2 , pp. 147-161
    • Doucet, A.1    Duvaut, P.2
  • 28
    • 77951169269 scopus 로고    scopus 로고
    • Bayesian orthogonal component analysis for sparse representation
    • N. Dobigeon, and J.Y. Tourneret Bayesian orthogonal component analysis for sparse representation IEEE Trans. Signal Process. 58 5 2010 2675 2685
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.5 , pp. 2675-2685
    • Dobigeon, N.1    Tourneret, J.Y.2
  • 32
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell, and J.A. Tropp CoSaMP: iterative signal recovery from incomplete and inaccurate samples Appl. Comput. Harmonic Anal. 26 3 2009 301 321
    • (2009) Appl. Comput. Harmonic Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 33
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • A. Gelman, and D.B. Rubin Inference from iterative simulation using multiple sequences Stat. Sci. 7 4 1992 457 472
    • (1992) Stat. Sci. , vol.7 , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 35
    • 64349110818 scopus 로고    scopus 로고
    • Audio denoising by time-frequency block thresholding
    • G. Yu, S. Mallat, and E. Bacry Audio denoising by time-frequency block thresholding IEEE Trans. Signal Process. 56 5 2008 1830 1839
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.5 , pp. 1830-1839
    • Yu, G.1    Mallat, S.2    Bacry, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.