메뉴 건너뛰기




Volumn 37, Issue 3, 2013, Pages 276-282

Sample size considerations of prediction-validation methods in high-dimensional data for survival outcomes

Author keywords

Gene expression; GWAS; High dimensional data; Prediction validation; Sample size; Survival

Indexed keywords

ARTICLE; GENETIC DATABASE; GENOME ANALYSIS; OUTCOME ASSESSMENT; PREDICTIVE VALUE; SAMPLE SIZE; SIMULATION; SURVIVAL RATE; VALIDATION STUDY;

EID: 84875647843     PISSN: 07410395     EISSN: 10982272     Source Type: Journal    
DOI: 10.1002/gepi.21721     Document Type: Article
Times cited : (32)

References (22)
  • 3
    • 0000336139 scopus 로고
    • Regression models and life tables (with discussion)
    • Cox D. 1972. Regression models and life tables (with discussion). J R Stat Soc B 34:187-220.
    • (1972) J R Stat Soc B , vol.34 , pp. 187-220
    • Cox, D.1
  • 4
    • 33845404310 scopus 로고    scopus 로고
    • Sample size planning for developing classifiers using high-dimensional DNA microarray data
    • Dobbin K, Simon R. 2007. Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 8(1):101-117.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 101-117
    • Dobbin, K.1    Simon, R.2
  • 7
    • 21644451292 scopus 로고    scopus 로고
    • Sample size calculation for multiple testing in microarray data analysis
    • Jung SH, Bang H, Young S. 2005. Sample size calculation for multiple testing in microarray data analysis. Biostatistics 6(1):157-169.
    • (2005) Biostatistics , vol.6 , Issue.1 , pp. 157-169
    • Jung, S.H.1    Bang, H.2    Young, S.3
  • 8
    • 25144463543 scopus 로고    scopus 로고
    • Sample size for FDR-control in microarray data analysis
    • Jung SH. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics 21(14):3097-3104.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3097-3104
    • Jung, S.H.1
  • 9
    • 84856302345 scopus 로고    scopus 로고
    • Power and sample size calculation for microarray studies
    • Jung SH, Young SS. 2012. Power and sample size calculation for microarray studies. J Biopharm Stat 22:30-42.
    • (2012) J Biopharm Stat , vol.22 , pp. 30-42
    • Jung, S.H.1    Young, S.S.2
  • 10
    • 34147178433 scopus 로고    scopus 로고
    • Quick calculation for sample size while controlling false discovery rate with application to microarray analysis
    • Liu P, Hwang JT. 2007. Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics 23(6):739-746.
    • (2007) Bioinformatics , vol.23 , Issue.6 , pp. 739-746
    • Liu, P.1    Hwang, J.T.2
  • 11
    • 83955162950 scopus 로고    scopus 로고
    • Estimating effect sizes of differentially expressed genes for power and sample-size assessments in microarray experiments
    • Matsui S, Noma H. 2011. Estimating effect sizes of differentially expressed genes for power and sample-size assessments in microarray experiments. Biometrics 67(4):1225-1235.
    • (2011) Biometrics , vol.67 , Issue.4 , pp. 1225-1235
    • Matsui, S.1    Noma, H.2
  • 12
    • 79952494521 scopus 로고    scopus 로고
    • Sample size requirements to detect gene-environment interactions in genome-wide association studies
    • Murcray CE, Lewinger JP, Conti DV, Thomas DC, Gauderman WJ. 2011. Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genet Epidemiol 35(3):201-210.
    • (2011) Genet Epidemiol , vol.35 , Issue.3 , pp. 201-210
    • Murcray, C.E.1    Lewinger, J.P.2    Conti, D.V.3    Thomas, D.C.4    Gauderman, W.J.5
  • 13
    • 70450228445 scopus 로고    scopus 로고
    • Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data
    • Pang H, Tong T, Zhao H. 2009. Shrinkage-based diagonal discriminant analysis and its applications in high-dimensional data. Biometrics 65(4):1021-1029.
    • (2009) Biometrics , vol.65 , Issue.4 , pp. 1021-1029
    • Pang, H.1    Tong, T.2    Zhao, H.3
  • 14
    • 77950510575 scopus 로고    scopus 로고
    • Pathway analysis using random forests with bivariate node-split for survival outcomes
    • Pang H, Datta D, Zhao H. 2010. Pathway analysis using random forests with bivariate node-split for survival outcomes. Bioinformatics 26(2):250-258.
    • (2010) Bioinformatics , vol.26 , Issue.2 , pp. 250-258
    • Pang, H.1    Datta, D.2    Zhao, H.3
  • 15
    • 79956304186 scopus 로고    scopus 로고
    • Pathway-based identification of SNPs predictive of survival
    • Pang H, Hauser M, Minvielle S. 2011. Pathway-based identification of SNPs predictive of survival. Eur J Hum Genet 19(6):704-709.
    • (2011) Eur J Hum Genet , vol.19 , Issue.6 , pp. 704-709
    • Pang, H.1    Hauser, M.2    Minvielle, S.3
  • 16
    • 21444454257 scopus 로고    scopus 로고
    • False discovery rate, sensitivity and sample size for microarray studies
    • Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A. 2005. False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21(13):3017-3024.
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3017-3024
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3    Gusnanto, A.4    Ploner, A.5
  • 17
    • 0000957062 scopus 로고
    • Asymptotically efficient rank invariant test procedures
    • Peto R, Peto J. 1972. Asymptotically efficient rank invariant test procedures. J R Stat Soc A 135(2):185-206.
    • (1972) J R Stat Soc A , vol.135 , Issue.2 , pp. 185-206
    • Peto, R.1    Peto, J.2
  • 18
    • 79955762500 scopus 로고    scopus 로고
    • Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data
    • Simon RM, Subramanian J, Li MC, Menezes S. 2011. Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief Bioinform 12(3):203-214.
    • (2011) Brief Bioinform , vol.12 , Issue.3 , pp. 203-214
    • Simon, R.M.1    Subramanian, J.2    Li, M.C.3    Menezes, S.4
  • 19
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • Storey JD. 2002. A direct approach to false discovery rates. J R Stat Soc B 64:479-498.
    • (2002) J R Stat Soc B , vol.64 , pp. 479-498
    • Storey, J.D.1
  • 20
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J R Stat Soc B 58(1):267-288.
    • (1996) J R Stat Soc B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 21
    • 42949153333 scopus 로고    scopus 로고
    • Practical guidelines for assessing power and false discovery rate for a fixed sample size in microarray experiments
    • Tong T, Zhao H. 2008. Practical guidelines for assessing power and false discovery rate for a fixed sample size in microarray experiments. Stat Med 27(11):1960-1972.
    • (2008) Stat Med , vol.27 , Issue.11 , pp. 1960-1972
    • Tong, T.1    Zhao, H.2
  • 22
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. 2005. Regularization and variable selection via the elastic net. J R Stat Soc B 67(2):301-320.
    • (2005) J R Stat Soc B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.