메뉴 건너뛰기




Volumn 67, Issue 4, 2011, Pages 1225-1235

Estimating effect sizes of differentially expressed genes for power and sample-size assessments in microarray experiments

Author keywords

Effect size; Empirical Bayes; Gene screening; Hierarchical mixture models; Microarrays; Power; Sample size

Indexed keywords

GENES; SAMPLING; SCREENING; STATISTICAL TESTS;

EID: 83955162950     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2011.01618.x     Document Type: Article
Times cited : (23)

References (38)
  • 1
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289-300.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 2
    • 0034370950 scopus 로고    scopus 로고
    • On the adaptive control of the false discovery rate in multiple testing with independent statistics
    • Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics 25, 60-83.
    • (2000) Journal of Educational and Behavioral Statistics , vol.25 , pp. 60-83
    • Benjamini, Y.1    Hochberg, Y.2
  • 3
    • 0001294318 scopus 로고
    • A sample reuse method for accurate parametric empirical Bayes confidence intervals
    • Carlin, B. P. and Gelfand, A. E. (1991). A sample reuse method for accurate parametric empirical Bayes confidence intervals. Journal of the Royal Statistical Society, Series B 53, 189-200.
    • (1991) Journal of the Royal Statistical Society, Series B , vol.53 , pp. 189-200
    • Carlin, B.P.1    Gelfand, A.E.2
  • 5
    • 19544383638 scopus 로고    scopus 로고
    • Sample size determination in microarray experiments for class comparison and prognostic classification
    • Dobbin, K. and Simon, R. (2005). Sample size determination in microarray experiments for class comparison and prognostic classification. Biostatistics 6, 27-38.
    • (2005) Biostatistics , vol.6 , pp. 27-38
    • Dobbin, K.1    Simon, R.2
  • 6
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis significance testing: The choice of a null hypothesis
    • Efron, B. (2004). Large-scale simultaneous hypothesis significance testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96-104.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 96-104
    • Efron, B.1
  • 7
    • 38949198791 scopus 로고    scopus 로고
    • Size, power and false discovery rate
    • Efron, B. (2007). Size, power and false discovery rate. The Annals of Statistics 35, 1351-1377.
    • (2007) The Annals of Statistics , vol.35 , pp. 1351-1377
    • Efron, B.1
  • 8
    • 70349761735 scopus 로고    scopus 로고
    • Empirical Bayes estimates for large-scale prediction problems
    • Efron, B. (2009). Empirical Bayes estimates for large-scale prediction problems. Journal of the American Statistical Association 104, 1015-1028.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 1015-1028
    • Efron, B.1
  • 9
    • 33645086851 scopus 로고    scopus 로고
    • Bayesian robust inference for differential gene expression in microarrays with multiple samples
    • Gottardo, R., Raftery, A. E., Yeung, K. Y., and Bumgarner, R. E. (2006). Bayesian robust inference for differential gene expression in microarrays with multiple samples. Biometrics 62, 10-18.
    • (2006) Biometrics , vol.62 , pp. 10-18
    • Gottardo, R.1    Raftery, A.E.2    Yeung, K.Y.3    Bumgarner, R.E.4
  • 10
    • 0034528314 scopus 로고    scopus 로고
    • Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates
    • Hsieh, F. Y. and Lavori, P. W. (2000). Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Controlled Clinical Trials 21, 552-560.
    • (2000) Controlled Clinical Trials , vol.21 , pp. 552-560
    • Hsieh, F.Y.1    Lavori, P.W.2
  • 12
    • 25144463543 scopus 로고    scopus 로고
    • Sample size for FDR-control in microarray data analysis
    • Jung, S. H. (2005). Sample size for FDR-control in microarray data analysis. Bioinformatics 21, 3097-3104.
    • (2005) Bioinformatics , vol.21 , pp. 3097-3104
    • Jung, S.H.1
  • 14
    • 0346888587 scopus 로고    scopus 로고
    • On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles
    • Kendziorski, C. M., Newton, M. A., Lan, H., and Gould, M. N. (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine 22, 3899-3914.
    • (2003) Statistics in Medicine , vol.22 , pp. 3899-3914
    • Kendziorski, C.M.1    Newton, M.A.2    Lan, H.3    Gould, M.N.4
  • 17
    • 33847325857 scopus 로고    scopus 로고
    • Flexible empirical Bayes models for differential gene expression
    • Lo, K. and Gottardo, R. (2007). Flexible empirical Bayes models for differential gene expression. Bioinformatics 23, 328-335.
    • (2007) Bioinformatics , vol.23 , pp. 328-335
    • Lo, K.1    Gottardo, R.2
  • 18
    • 79953150952 scopus 로고    scopus 로고
    • Estimation and selection in high-dimensional genomic studies for developing molecular diagnostics
    • Matsui, S. and Noma, H. (2011). Estimation and selection in high-dimensional genomic studies for developing molecular diagnostics. Biostatistics 12, 223-233.
    • (2011) Biostatistics , vol.12 , pp. 223-233
    • Matsui, S.1    Noma, H.2
  • 19
    • 40849140921 scopus 로고    scopus 로고
    • Clustering of significant genes in prognostic studies with microarrays: Application to a clinical study for multiple myeloma
    • Matsui, S., Yamanaka, T., Barlogie, B., Shaughnessy, J. D., Jr, and Crowley, J. (2008). Clustering of significant genes in prognostic studies with microarrays: Application to a clinical study for multiple myeloma. Statistics in Medicine 27, 1106-1120.
    • (2008) Statistics in Medicine , vol.27 , pp. 1106-1120
    • Matsui, S.1    Yamanaka, T.2    Barlogie, B.3    Shaughnessy Jr., J.D.4    Crowley, J.5
  • 20
    • 39849098443 scopus 로고    scopus 로고
    • Sample size calculations based on ranking and selection in microarray experiments
    • Matsui, S., Zeng, S., Yamanaka, T., and Shaughnessy, J. (2008). Sample size calculations based on ranking and selection in microarray experiments. Biometrics 64, 217-226.
    • (2008) Biometrics , vol.64 , pp. 217-226
    • Matsui, S.1    Zeng, S.2    Yamanaka, T.3    Shaughnessy, J.4
  • 21
    • 33745606461 scopus 로고    scopus 로고
    • A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays
    • McLachlan, G. J., Bean, R. W., and Jones, L. B.-T. (2006). A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22, 1608-1615.
    • (2006) Bioinformatics , vol.22 , pp. 1608-1615
    • McLachlan, G.J.1    Bean, R.W.2    Jones, L.B.-T.3
  • 22
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and Tsui, K. W. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology 8, 37-52.
    • (2001) Journal of Computational Biology , vol.8 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 23
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155-176.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 24
    • 77749264356 scopus 로고    scopus 로고
    • Bayesian ranking and selection methods using hierarchical mixture models in microarray studies
    • Noma, H., Matsui, S., Omori, T., and Sato, T. (2010). Bayesian ranking and selection methods using hierarchical mixture models in microarray studies. Biostatistics 11, 281-289.
    • (2010) Biostatistics , vol.11 , pp. 281-289
    • Noma, H.1    Matsui, S.2    Omori, T.3    Sato, T.4
  • 25
    • 74349085386 scopus 로고    scopus 로고
    • Sample size calculations for controlling the distribution of false discovery proportion in microarray experiments
    • Oura, T., Matsui, S., and Kawakami, K. (2009). Sample size calculations for controlling the distribution of false discovery proportion in microarray experiments. Biostatistics 10, 694-705.
    • (2009) Biostatistics , vol.10 , pp. 694-705
    • Oura, T.1    Matsui, S.2    Kawakami, K.3
  • 26
    • 21444454257 scopus 로고    scopus 로고
    • False discovery rate, sensitivity and sample size for microarray studies
    • Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A., and Ploner, A. (2005). False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21, 3017-3024.
    • (2005) Bioinformatics , vol.21 , pp. 3017-3024
    • Pawitan, Y.1    Michiels, S.2    Koscielny, S.3    Gusnanto, A.4    Ploner, A.5
  • 29
    • 34548803606 scopus 로고    scopus 로고
    • Sample size calculation with dependence adjustment for FDR-control in microarray studies
    • Shao, Y. and Tseng, C. H. (2007). Sample size calculation with dependence adjustment for FDR-control in microarray studies. Statistics in Medicine 26, 4219-4237.
    • (2007) Statistics in Medicine , vol.26 , pp. 4219-4237
    • Shao, Y.1    Tseng, C.H.2
  • 31
  • 35
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rate: A unified approach
    • Storey, J. D., Taylor J. E., and Siegmund, D. (2004). Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rate: A unified approach. Journal of the Royal Statistical Society, Series B 66, 187-205.
    • (2004) Journal of the Royal Statistical Society, Series B , vol.66 , pp. 187-205
    • Storey, J.D.1    Taylor, J.E.2    Siegmund, D.3
  • 36
    • 42949153333 scopus 로고    scopus 로고
    • Practical guidelines for assessing power and false discovery rate for a fixed sample size in microarray experiments
    • Tong, T. and Zhao, H. (2008). Practical guidelines for assessing power and false discovery rate for a fixed sample size in microarray experiments. Statistics in Medicine 27, 1960-1972.
    • (2008) Statistics in Medicine , vol.27 , pp. 1960-1972
    • Tong, T.1    Zhao, H.2
  • 37
    • 17444387485 scopus 로고    scopus 로고
    • Sample size for gene expression microarray experiments
    • Tsai, C. A., Wang, S. J., Chen, D. T., and Chen, J. J. (2005). Sample size for gene expression microarray experiments. Bioinformatics 21, 1502-1508.
    • (2005) Bioinformatics , vol.21 , pp. 1502-1508
    • Tsai, C.A.1    Wang, S.J.2    Chen, D.T.3    Chen, J.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.