메뉴 건너뛰기




Volumn 9, Issue 2, 2013, Pages 280-299

Translational biomarker discovery in clinical metabolomics: An introductory tutorial

Author keywords

AUC; Biomarker analysis; Biomarker validation and reporting; Bootstrapping; Confidence intervals; Cross validation; Optimal threshold; ROC curve; Sample size

Indexed keywords

ACYLCARNITINE; AMINO ACID; BIOLOGICAL MARKER; PROSTATE SPECIFIC ANTIGEN;

EID: 84875552323     PISSN: 15733882     EISSN: 15733890     Source Type: Journal    
DOI: 10.1007/s11306-012-0482-9     Document Type: Article
Times cited : (752)

References (63)
  • 5
    • 49549139345 scopus 로고
    • The area above the ordinal dominance graph and the area below the receiver operating characteristic graph
    • Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology, 12(4), 387-415.
    • (1975) Journal of Mathematical Psychology , vol.12 , Issue.4 , pp. 387-415
    • Bamber, D.1
  • 6
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166-173.
    • (2003) Journal of Chemometrics , vol.17 , Issue.3 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 8
    • 84855679008 scopus 로고    scopus 로고
    • Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them)
    • Berrar, D., & Flach, P. (2010). Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). Briefings in Bioinformatics, 13(1), 83-97.
    • (2010) Briefings in Bioinformatics , vol.13 , Issue.1 , pp. 83-97
    • Berrar, D.1    Flach, P.2
  • 9
    • 30744460897 scopus 로고    scopus 로고
    • Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation
    • Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry, 78(2), 567-574.
    • (2006) Analytical Chemistry , vol.78 , Issue.2 , pp. 567-574
    • Bijlsma, S.1    Bobeldijk, I.2    Verheij, E.R.3    Ramaker, R.4    Kochhar, S.5    Macdonald, I.A.6
  • 10
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193.
    • (2003) Bioinformatics , vol.19 , Issue.2 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 33846240326 scopus 로고    scopus 로고
    • Statistical strategies for avoiding false discoveries in metabolomics and related experiments
    • Broadhurst, D., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2(4), 171-196.
    • (2006) Metabolomics , vol.2 , Issue.4 , pp. 171-196
    • Broadhurst, D.1    Kell, D.B.2
  • 14
    • 0030859519 scopus 로고    scopus 로고
    • Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry
    • Broadhurst, D., Goodacre, R., Jones, A., Rowland, J. J., & Kell, D. B. (1997). Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Analytica Chimica Acta, 348(1-3), 71-86.
    • (1997) Analytica Chimica Acta , vol.348 , Issue.1-3 , pp. 71-86
    • Broadhurst, D.1    Goodacre, R.2    Jones, A.3    Rowland, J.J.4    Kell, D.B.5
  • 15
    • 0034657861 scopus 로고    scopus 로고
    • Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians
    • Carpenter, J., & Bithell, J. (2000). Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians. Statistics in Medicine, 19(9), 1141-1164.
    • (2000) Statistics in Medicine , vol.19 , Issue.9 , pp. 1141-1164
    • Carpenter, J.1    Bithell, J.2
  • 16
    • 0035241692 scopus 로고    scopus 로고
    • Mass spectrometry in the clinical laboratory
    • Chace, D. H. (2001). Mass spectrometry in the clinical laboratory. Chemical Reviews, 101(2), 445-477.
    • (2001) Chemical Reviews , vol.101 , Issue.2 , pp. 445-477
    • Chace, D.H.1
  • 17
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 18
    • 33745728718 scopus 로고    scopus 로고
    • Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabolomics
    • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabolomics. Analytical Chemistry, 78(13), 4281-4290.
    • (2006) Analytical Chemistry , vol.78 , Issue.13 , pp. 4281-4290
    • Dieterle, F.1    Ross, A.2    Schlotterbeck, G.3    Senn, H.4
  • 19
    • 0041833610 scopus 로고    scopus 로고
    • Partial AUC Estimation and Regression
    • Dodd, L. E., & Pepe, M. S. (2003). Partial AUC Estimation and Regression. Biometrics, 59(3), 614-623.
    • (2003) Biometrics , vol.59 , Issue.3 , pp. 614-623
    • Dodd, L.E.1    Pepe, M.S.2
  • 20
    • 78650315006 scopus 로고    scopus 로고
    • Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy
    • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387-426.
    • (2011) Chemical Society Reviews , vol.40 , Issue.1 , pp. 387-426
    • Dunn, W.B.1    Broadhurst, D.I.2    Atherton, H.J.3    Goodacre, R.4    Griffin, J.L.5
  • 21
    • 84867341623 scopus 로고    scopus 로고
    • The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans
    • Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012). The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis, 4(18), 2249-2264.
    • (2012) Bioanalysis , vol.4 , Issue.18 , pp. 2249-2264
    • Dunn, W.B.1    Wilson, I.D.2    Nicholls, A.W.3    Broadhurst, D.4
  • 24
    • 0037407912 scopus 로고    scopus 로고
    • Sample size estimation: How many individuals should be studied?
    • Eng, J. (2003). Sample size estimation: How many individuals should be studied? Radiology, 227(2), 309-313.
    • (2003) Radiology , vol.227 , Issue.2 , pp. 309-313
    • Eng, J.1
  • 25
    • 1342330117 scopus 로고    scopus 로고
    • Sample size estimation: A glimpse beyond simple formulas
    • Eng, J. (2004). Sample size estimation: A glimpse beyond simple formulas. Radiology, 230(3), 606-612.
    • (2004) Radiology , vol.230 , Issue.3 , pp. 606-612
    • Eng, J.1
  • 28
    • 77951969442 scopus 로고    scopus 로고
    • Metscape: A Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks
    • Gao, J., Tarcea, V. G., Karnovsky, A., Mirel, B. R., Weymouth, T. E., Beecher, C. W., et al. (2010). Metscape: A Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics, 26(7), 971-973.
    • (2010) Bioinformatics , vol.26 , Issue.7 , pp. 971-973
    • Gao, J.1    Tarcea, V.G.2    Karnovsky, A.3    Mirel, B.R.4    Weymouth, T.E.5    Beecher, C.W.6
  • 30
    • 63449142392 scopus 로고    scopus 로고
    • Filtering for increased power for microarray data analysis
    • Hackstadt, A. J., & Hess, A. M. (2009). Filtering for increased power for microarray data analysis. BMC Bioinformatics, 10, 11.
    • (2009) BMC Bioinformatics , vol.10 , pp. 11
    • Hackstadt, A.J.1    Hess, A.M.2
  • 32
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Isabelle, G., & Andr, E. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Isabelle, G.1    Andr, E.2
  • 33
    • 16444371874 scopus 로고    scopus 로고
    • Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data
    • Jarvis, R. M., & Goodacre, R. (2005). Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data. Bioinformatics, 21(7), 860-868.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 860-868
    • Jarvis, R.M.1    Goodacre, R.2
  • 36
    • 84860359421 scopus 로고    scopus 로고
    • State-of-the art data normalization methods improve NMR-based metabolomic analysis
    • Kohl, S. M., Klein, M. S., Hochrein, J., Oefner, P. J., Spang, R., & Gronwald, W. (2012). State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics, 8(Suppl 1), 146-160.
    • (2012) Metabolomics , vol.8 , Issue.SUPPL. 1 , pp. 146-160
    • Kohl, S.M.1    Klein, M.S.2    Hochrein, J.3    Oefner, P.J.4    Spang, R.5    Gronwald, W.6
  • 37
    • 26044460461 scopus 로고    scopus 로고
    • The use of receiver operating characteristic curves in biomedical informatics
    • Lasko, T. A., Bhagwat, J. G., Zou, K. H., & Ohno-Machado, L. (2005). The use of receiver operating characteristic curves in biomedical informatics. Journal of Biomedical Informatics, 38(5), 404-415.
    • (2005) Journal of Biomedical Informatics , vol.38 , Issue.5 , pp. 404-415
    • Lasko, T.A.1    Bhagwat, J.G.2    Zou, K.H.3    Ohno-Machado, L.4
  • 38
    • 77951076082 scopus 로고    scopus 로고
    • Robust and classical PLS regression compared
    • Liebmann, B., Filzmoser, P., & Varmuza, K. (2010). Robust and classical PLS regression compared. Journal of Chemometrics, 24(3-4), 111-120.
    • (2010) Journal of Chemometrics , vol.24 , Issue.3-4 , pp. 111-120
    • Liebmann, B.1    Filzmoser, P.2    Varmuza, K.3
  • 39
    • 0024370623 scopus 로고
    • Analyzing a portion of the ROC curve
    • McClish, D. K. (1989). Analyzing a portion of the ROC curve. Medical Decision Making, 9(3), 190-195.
    • (1989) Medical Decision Making , vol.9 , Issue.3 , pp. 190-195
    • McClish, D.K.1
  • 40
    • 0028113345 scopus 로고
    • A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1
    • Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266(5182), 66-71.
    • (1994) Science , vol.266 , Issue.5182 , pp. 66-71
    • Miki, Y.1    Swensen, J.2    Shattuck-Eidens, D.3    Futreal, P.A.4    Harshman, K.5    Tavtigian, S.6
  • 41
    • 0035836612 scopus 로고    scopus 로고
    • Bedside multimarker testing for risk stratification in chest pain units: The chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study
    • Newby, L. K., Storrow, A. B., Gibler, W. B., Garvey, J. L., Tucker, J. F., Kaplan, A. L., et al. (2001). Bedside multimarker testing for risk stratification in chest pain units: The chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation, 103(14), 1832-1837.
    • (2001) Circulation , vol.103 , Issue.14 , pp. 1832-1837
    • Newby, L.K.1    Storrow, A.B.2    Gibler, W.B.3    Garvey, J.L.4    Tucker, J.F.5    Kaplan, A.L.6
  • 42
    • 71849096141 scopus 로고    scopus 로고
    • How does multiple testing correction work?
    • Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27(12), 1135-1137.
    • (2009) Nature Biotechnology , vol.27 , Issue.12 , pp. 1135-1137
    • Noble, W.S.1
  • 43
    • 3042512345 scopus 로고    scopus 로고
    • ROC curves in clinical chemistry: Uses, misuses, and possible solutions
    • Obuchowski, N. A., Lieber, M. L., & Wians, F. H. (2004). ROC curves in clinical chemistry: Uses, misuses, and possible solutions. Clinical Chemistry, 50(7), 1118-1125.
    • (2004) Clinical Chemistry , vol.50 , Issue.7 , pp. 1118-1125
    • Obuchowski, N.A.1    Lieber, M.L.2    Wians Jr., F.H.3
  • 46
    • 0032855594 scopus 로고    scopus 로고
    • Prostate specific antigen: A decade of discovery-what we have learned and where we are going
    • Polascik, T. J., Oesterling, J. E., & Partin, A. W. (1999). Prostate specific antigen: A decade of discovery-what we have learned and where we are going. Journal of Urology, 162(2), 293-306.
    • (1999) Journal of Urology , vol.162 , Issue.2 , pp. 293-306
    • Polascik, T.J.1    Oesterling, J.E.2    Partin, A.W.3
  • 48
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 51
    • 58349085083 scopus 로고    scopus 로고
    • Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research
    • Soreide, K. (2009). Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research. Journal of Clinical Pathology, 62(1), 1-5.
    • (2009) Journal of Clinical Pathology , vol.62 , Issue.1 , pp. 1-5
    • Soreide, K.1
  • 52
    • 84860386341 scopus 로고    scopus 로고
    • Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies
    • Szymanska, E., Saccenti, E., Smilde, A. K., & Westerhuis, J. A. (2012). Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8(Suppl 1), 3-16.
    • (2012) Metabolomics , vol.8 , Issue.SUPPL. 1 , pp. 3-16
    • Szymanska, E.1    Saccenti, E.2    Smilde, A.K.3    Westerhuis, J.A.4
  • 54
    • 33747019547 scopus 로고    scopus 로고
    • Centering, scaling, and transformations: Improving the biological information content of metabolomics data
    • van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.
    • (2006) BMC Genomics , vol.7 , pp. 142
    • van den Berg, R.A.1    Hoefsloot, H.C.2    Westerhuis, J.A.3    Smilde, A.K.4    van der Werf, M.J.5
  • 55
    • 21244485773 scopus 로고    scopus 로고
    • The partial area under the summary ROC curve
    • Walter, S. D. (2005). The partial area under the summary ROC curve. Statistics in Medicine, 24(13), 2025-2040.
    • (2005) Statistics in Medicine , vol.24 , Issue.13 , pp. 2025-2040
    • Walter, S.D.1
  • 57
    • 0037685217 scopus 로고    scopus 로고
    • Screening newborns for inborn errors of metabolism by tandem mass spectrometry
    • Wilcken, B., Wiley, V., Hammond, J., & Carpenter, K. (2003). Screening newborns for inborn errors of metabolism by tandem mass spectrometry. New England Journal of Medicine, 348(23), 2304-2312.
    • (2003) New England Journal of Medicine , vol.348 , Issue.23 , pp. 2304-2312
    • Wilcken, B.1    Wiley, V.2    Hammond, J.3    Carpenter, K.4
  • 58
    • 77956550520 scopus 로고    scopus 로고
    • MetPA: A web-based metabolomics tool for pathway analysis and visualization
    • Xia, J., & Wishart, D. S. (2010a). MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics, 26(18), 2342-2344.
    • (2010) Bioinformatics , vol.26 , Issue.18 , pp. 2342-2344
    • Xia, J.1    Wishart, D.S.2
  • 59
    • 77954256613 scopus 로고    scopus 로고
    • MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data
    • Xia, J., & Wishart, D. S. (2010b). MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Research, 38, W71-W77.
    • (2010) Nucleic Acids Research , vol.38
    • Xia, J.1    Wishart, D.S.2
  • 60
    • 79958115671 scopus 로고    scopus 로고
    • Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst
    • Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743-760.
    • (2011) Nature Protocols , vol.6 , Issue.6 , pp. 743-760
    • Xia, J.1    Wishart, D.S.2
  • 61
    • 16244366026 scopus 로고
    • Index for rating diagnostic tests
    • Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32-35.
    • (1950) Cancer , vol.3 , Issue.1 , pp. 32-35
    • Youden, W.J.1
  • 62
    • 0030963967 scopus 로고    scopus 로고
    • Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests
    • Zou, K. H., Hall, W. J., & Shapiro, D. E. (1997). Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests. Statistics in Medicine, 16(19), 2143-2156.
    • (1997) Statistics in Medicine , vol.16 , Issue.19 , pp. 2143-2156
    • Zou, K.H.1    Hall, W.J.2    Shapiro, D.E.3
  • 63
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39(4), 561-577.
    • (1993) Clinical Chemistry , vol.39 , Issue.4 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.