-
1
-
-
84856693765
-
Phytoalexins in defense against pathogens
-
Ahuja, I., Kissen, R., and Bones, A.M. (2012). Phytoalexins in defense against pathogens. Trends Plant Sci. 17: 73-90.
-
(2012)
Trends Plant Sci.
, vol.17
, pp. 73-90
-
-
Ahuja, I.1
Kissen, R.2
Bones, A.M.3
-
2
-
-
84865559403
-
Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity
-
Bednarek, P. (2012). Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. ChemBioChem 13: 1846-1859.
-
(2012)
ChemBioChem
, vol.13
, pp. 1846-1859
-
-
Bednarek, P.1
-
3
-
-
18044371000
-
Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots
-
Bednarek, P., Schneider, B., Svatos, A., Oldham, N.J., and Hahlbrock, K. (2005). Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol. 138: 1058-1070.
-
(2005)
Plant Physiol.
, vol.138
, pp. 1058-1070
-
-
Bednarek, P.1
Schneider, B.2
Svatos, A.3
Oldham, N.J.4
Hahlbrock, K.5
-
4
-
-
33846903876
-
Function of phytochelatin synthase in catabolism of glutathione-conjugates
-
Blum, R., Beck, A., Korte, A., Stengel, A., Letzel, T., Lendzian, K., and Grill, E. (2007). Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J. 49: 740-749.
-
(2007)
Plant J.
, vol.49
, pp. 740-749
-
-
Blum, R.1
Beck, A.2
Korte, A.3
Stengel, A.4
Letzel, T.5
Lendzian, K.6
Grill, E.7
-
5
-
-
70349235411
-
The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana
-
Böttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D., and Glawischnig, E. (2009). The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21: 1830-1845.
-
(2009)
Plant Cell
, vol.21
, pp. 1830-1845
-
-
Böttcher, C.1
Westphal, L.2
Schmotz, C.3
Prade, E.4
Scheel, D.5
Glawischnig, E.6
-
6
-
-
2342477828
-
Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana
-
Denby, K.J., Kumar, P., and Kliebenstein, D.J. (2004). Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J. 38: 473-486.
-
(2004)
Plant J.
, vol.38
, pp. 473-486
-
-
Denby, K.J.1
Kumar, P.2
Kliebenstein, D.J.3
-
7
-
-
78650652614
-
Compensatory expression and substrate inducibility of γ-glutamyl transferase GGT2 isoform in Arabidopsis thaliana
-
Destro, T., Prasad, D., Martignago, D., Bernet, I.L., Trentin, A.R., Renu, I.K., Ferretti, M., and Masi, A. (2011). Compensatory expression and substrate inducibility of γ-glutamyl transferase GGT2 isoform in Arabidopsis thaliana. J. Exp. Bot. 62: 805-814.
-
(2011)
J. Exp. Bot.
, vol.62
, pp. 805-814
-
-
Destro, T.1
Prasad, D.2
Martignago, D.3
Bernet, I.L.4
Trentin, A.R.5
Renu, I.K.6
Ferretti, M.7
Masi, A.8
-
8
-
-
57449092576
-
γ-Glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast
-
Ferretti, M., Destro, T., Tosatto, S.C.E., La Rocca, N., Rascio, N., and Masi, A. (2009). γ-Glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast. New Phytol. 181: 115-126.
-
(2009)
New Phytol.
, vol.181
, pp. 115-126
-
-
Ferretti, M.1
Destro, T.2
Tosatto, S.C.E.3
la Rocca, N.4
Rascio, N.5
Masi, A.6
-
9
-
-
79960850408
-
Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis
-
Geu-Flores, F., Møldrup, M.E., Böttcher, C., Olsen, C.E., Scheel, D., and Halkier, B.A. (2011). Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23: 2456-2469.
-
(2011)
Plant Cell
, vol.23
, pp. 2456-2469
-
-
Geu-Flores, F.1
Møldrup, M.E.2
Böttcher, C.3
Olsen, C.E.4
Scheel, D.5
Halkier, B.A.6
-
10
-
-
68049086790
-
Glucosinolate engineering identifies a γ-glutamyl peptidase
-
Geu-Flores, F., Nielsen, M.T., Nafisi, M., Møldrup, M.E., Olsen, C.E., Motawia, M.S., and Halkier, B.A. (2009). Glucosinolate engineering identifies a γ-glutamyl peptidase. Nat. Chem. Biol. 5: 575-577.
-
(2009)
Nat. Chem. Biol.
, vol.5
, pp. 575-577
-
-
Geu-Flores, F.1
Nielsen, M.T.2
Nafisi, M.3
Møldrup, M.E.4
Olsen, C.E.5
Motawia, M.S.6
Halkier, B.A.7
-
12
-
-
2542513917
-
Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis
-
Glawischnig, E., Hansen, B.G., Olsen, C.E., and Halkier, B.A. (2004). Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc. Natl. Acad. Sci. USA 101: 8245-8250.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 8245-8250
-
-
Glawischnig, E.1
Hansen, B.G.2
Olsen, C.E.3
Halkier, B.A.4
-
13
-
-
0028593985
-
Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens
-
Glazebrook, J., and Ausubel, F.M. (1994). Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91: 8955-8959.
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, pp. 8955-8959
-
-
Glazebrook, J.1
Ausubel, F.M.2
-
14
-
-
0034049327
-
Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis
-
Hull, A.K., Vij, R., and Celenza, J.L. (2000). Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA 97: 2379-2384.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 2379-2384
-
-
Hull, A.K.1
Vij, R.2
Celenza, J.L.3
-
15
-
-
0036856924
-
Arabidopsis ecotype variability in camalexin production and reaction to infection by Alternaria brassicicola
-
Kagan, I.A., and Hammerschmidt, R. (2002). Arabidopsis ecotype variability in camalexin production and reaction to infection by Alternaria brassicicola. J. Chem. Ecol. 28: 2121-2140.
-
(2002)
J. Chem. Ecol.
, vol.28
, pp. 2121-2140
-
-
Kagan, I.A.1
Hammerschmidt, R.2
-
16
-
-
34547885780
-
Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis
-
Martin, M.N., Saladores, P.H., Lambert, E., Hudson, A.O., and Leustek, T. (2007). Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol. 144: 1715-1732.
-
(2007)
Plant Physiol.
, vol.144
, pp. 1715-1732
-
-
Martin, M.N.1
Saladores, P.H.2
Lambert, E.3
Hudson, A.O.4
Leustek, T.5
-
17
-
-
0034721782
-
Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid
-
Mikkelsen, M.D., Hansen, C.H., Wittstock, U., and Halkier, B.A. (2000). Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J. Biol. Chem. 275: 33712-33717.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 33712-33717
-
-
Mikkelsen, M.D.1
Hansen, C.H.2
Wittstock, U.3
Halkier, B.A.4
-
18
-
-
34547701767
-
Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis
-
Nafisi, M., Goregaoker, S., Botanga, C.J., Glawischnig, E., Olsen, C.E., Halkier, B.A., and Glazebrook, J. (2007). Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19: 2039-2052.
-
(2007)
Plant Cell
, vol.19
, pp. 2039-2052
-
-
Nafisi, M.1
Goregaoker, S.2
Botanga, C.J.3
Glawischnig, E.4
Olsen, C.E.5
Halkier, B.A.6
Glazebrook, J.7
-
19
-
-
71549123702
-
Roles of γ-glutamyl transpeptidase and γ-glutamyl cyclotransferase in glutathione and glutathione-conjugate metabolism in plants
-
In, J. Jean-Pierre, ed (London, United Kingdom: Academic Press)
-
Ohkama-Ohtsu, N., Fukuyama, K., and Oliver, D.J. (2009). Roles of γ-glutamyl transpeptidase and γ-glutamyl cyclotransferase in glutathione and glutathione-conjugate metabolism in plants. In Advances in Botanical Research, J. Jean-Pierre, ed (London, United Kingdom: Academic Press), pp. 87-113.
-
(2009)
Advances in Botanical Research
, pp. 87-113
-
-
Ohkama-Ohtsu, N.1
Fukuyama, K.2
Oliver, D.J.3
-
20
-
-
33847148080
-
Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis
-
Ohkama-Ohtsu, N., Radwan, S., Peterson, A., Zhao, P., Badr, A.F., Xiang, C., and Oliver, D.J. (2007b). Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J. 49: 865-877.
-
(2007)
Plant J.
, vol.49
, pp. 865-877
-
-
Ohkama-Ohtsu, N.1
Radwan, S.2
Peterson, A.3
Zhao, P.4
Badr, A.F.5
Xiang, C.6
Oliver, D.J.7
-
21
-
-
33847169054
-
Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis
-
Ohkama-Ohtsu, N., Zhao, P., Xiang, C., and Oliver, D.J. (2007a). Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J. 49: 878-888.
-
(2007)
Plant J.
, vol.49
, pp. 878-888
-
-
Ohkama-Ohtsu, N.1
Zhao, P.2
Xiang, C.3
Oliver, D.J.4
-
22
-
-
33845620655
-
Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis
-
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., and Mauch, F. (2007). Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49: 159-172.
-
(2007)
Plant J.
, vol.49
, pp. 159-172
-
-
Parisy, V.1
Poinssot, B.2
Owsianowski, L.3
Buchala, A.4
Glazebrook, J.5
Mauch, F.6
-
23
-
-
84860466322
-
Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis
-
Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., Shibata, D., and Ohta, D. (2012). Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol. Plant Microbe Interact. 25: 684-696.
-
(2012)
Mol. Plant Microbe Interact.
, vol.25
, pp. 684-696
-
-
Saga, H.1
Ogawa, T.2
Kai, K.3
Suzuki, H.4
Ogata, Y.5
Sakurai, N.6
Shibata, D.7
Ohta, D.8
-
24
-
-
37849020436
-
Decoding genes with coexpression networks and metabolomics-'Majority report by precogs'
-
Saito, K., Hirai, M.Y., and Yonekura-Sakakibara, K. (2008). Decoding genes with coexpression networks and metabolomics-'Majority report by precogs'. Trends Plant Sci. 13: 36-43.
-
(2008)
Trends Plant Sci.
, vol.13
, pp. 36-43
-
-
Saito, K.1
Hirai, M.Y.2
Yonekura-Sakakibara, K.3
-
25
-
-
33747148869
-
CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis
-
Schuhegger, R., Nafisi, M., Mansourova, M., Petersen, B.L., Olsen, C.E., Svatos, A., Halkier, B.A., and Glawischnig, E. (2006). CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol. 141: 1248-1254.
-
(2006)
Plant Physiol.
, vol.141
, pp. 1248-1254
-
-
Schuhegger, R.1
Nafisi, M.2
Mansourova, M.3
Petersen, B.L.4
Olsen, C.E.5
Svatos, A.6
Halkier, B.A.7
Glawischnig, E.8
-
27
-
-
79952299599
-
Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana
-
Su, T.B., Xu, J.A., Li, Y.A., Lei, L., Zhao, L., Yang, H.L., Feng, J.D., Liu, G.Q., and Ren, D.T. (2011). Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23: 364-380.
-
(2011)
Plant Cell
, vol.23
, pp. 364-380
-
-
Su, T.B.1
Xu, J.A.2
Li, Y.A.3
Lei, L.4
Zhao, L.5
Yang, H.L.6
Feng, J.D.7
Liu, G.Q.8
Ren, D.T.9
-
28
-
-
44849096813
-
Crystal structures of Escherichia coli γ-glutamyltranspeptidase in complex with azaserine and acivicin: Novel mechanistic implication for inhibition by glutamine antagonists
-
Wada, K., Hiratake, J., Irie, M., Okada, T., Yamada, C., Kumagai, H., Suzuki, H., and Fukuyama, K. (2008). Crystal structures of Escherichia coli γ-glutamyltranspeptidase in complex with azaserine and acivicin: novel mechanistic implication for inhibition by glutamine antagonists. J. Mol. Biol. 380: 361-372.
-
(2008)
J. Mol. Biol.
, vol.380
, pp. 361-372
-
-
Wada, K.1
Hiratake, J.2
Irie, M.3
Okada, T.4
Yamada, C.5
Kumagai, H.6
Suzuki, H.7
Fukuyama, K.8
-
29
-
-
84864036964
-
Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes
-
Wang, M.-Y., Liu, X.-T., Chen, Y., Xu, X.-J., Yu, B., Zhang, S.-Q., Li, Q., and He, Z.-H. (2012). Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. J. Integr. Plant Biol. 54: 471-485.
-
(2012)
J. Integr. Plant Biol.
, vol.54
, pp. 471-485
-
-
Wang, M.-Y.1
Liu, X.-T.2
Chen, Y.3
Xu, X.-J.4
Yu, B.5
Zhang, S.-Q.6
Li, Q.7
He, Z.-H.8
-
30
-
-
84862996527
-
The rise of chemodiversity in plants
-
Weng, J.-K., Philippe, R.N., and Noel, J.P. (2012). The rise of chemodiversity in plants. Science 336: 1667-1670.
-
(2012)
Science
, vol.336
, pp. 1667-1670
-
-
Weng, J.-K.1
Philippe, R.N.2
Noel, J.P.3
-
31
-
-
40349091686
-
An "Electronic Fluorescent Pictograph" browser for exploring and analyzing largescale biological data sets
-
Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An "Electronic Fluorescent Pictograph" browser for exploring and analyzing largescale biological data sets. PLoS ONE 2: e718.
-
(2007)
PLoS ONE
, vol.2
-
-
Winter, D.1
Vinegar, B.2
Nahal, H.3
Ammar, R.4
Wilson, G.V.5
Provart, N.J.6
-
32
-
-
0033388973
-
Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase
-
Zhou, N., Tootle, T.L., and Glazebrook, J. (1999). Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11: 2419-2428.
-
(1999)
Plant Cell
, vol.11
, pp. 2419-2428
-
-
Zhou, N.1
Tootle, T.L.2
Glazebrook, J.3
-
33
-
-
44949127129
-
Alkaloid biosynthesis: Metabolism and trafficking
-
Ziegler, J., and Facchini, P.J. (2008). Alkaloid biosynthesis: Metabolism and trafficking. Annu. Rev. Plant Biol. 59: 735-769.
-
(2008)
Annu. Rev. Plant Biol.
, vol.59
, pp. 735-769
-
-
Ziegler, J.1
Facchini, P.J.2
|