메뉴 건너뛰기




Volumn 106, Issue , 2013, Pages 126-136

Applying alternating direction method of multipliers for constrained dictionary learning

Author keywords

Alternate direction method of multipliers; Dictionary learning; Mixed constraints; Sparse coding

Indexed keywords

ALTERNATING DIRECTION METHOD OF MULTIPLIERS; ALTERNATING OPTIMIZATIONS; APPROXIMATION COEFFICIENTS; DICTIONARY LEARNING; ITERATIVE SHRINKAGES; METHOD OF MULTIPLIERS; MIXED CONSTRAINTS; SPARSE CODING;

EID: 84875404240     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.10.024     Document Type: Article
Times cited : (33)

References (36)
  • 1
    • 77955783919 scopus 로고    scopus 로고
    • Fast image recovery using variable splitting and constrained optimization
    • Afonso M., Bioucas-Dias J., Figueiredo M. Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 2010, 19(9):2345-2356.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.9 , pp. 2345-2356
    • Afonso, M.1    Bioucas-Dias, J.2    Figueiredo, M.3
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-svd. and algorithm for designing overcomplete dictionaries for sparse representations
    • Aharon M., Elad E., Bruckstein A. K-svd. and algorithm for designing overcomplete dictionaries for sparse representations. IEEE Trans. Signal Process. 2006, 54(11):4311-4322.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, E.2    Bruckstein, A.3
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck A., Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2:183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • URL
    • Boyd S., Parikh N., Chu E., Peleato B., Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3:1-122. URL 〈http://www.stanford.edu/~boyd/papers/distr_opt_stat_learning_admm.html〉.
    • (2011) Found. Trends Mach. Learn. , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 5
    • 84897352338 scopus 로고    scopus 로고
    • Nested iterative algorithms for convex constrained image recovery problems
    • Pesquet J.-P., Pustelnik N. Nested iterative algorithms for convex constrained image recovery problems. SIAM J. Imaging Sci. 2009, 2(2):730-762.
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.2 , pp. 730-762
    • Pesquet, J.-P.1    Pustelnik, N.2
  • 7
    • 39449085530 scopus 로고    scopus 로고
    • A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery
    • Combettes P., Pesquet J.-C. A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 2007, 1:564-574.
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , pp. 564-574
    • Combettes, P.1    Pesquet, J.-C.2
  • 8
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • Combettes P., Wajs V. Signal recovery by proximal forward-backward splitting. Multiscale Modeling and Simulation 2005, 4:1168-1200.
    • (2005) Multiscale Modeling and Simulation , vol.4 , pp. 1168-1200
    • Combettes, P.1    Wajs, V.2
  • 9
    • 79955044779 scopus 로고    scopus 로고
    • Proximal splitting methods in signal processing
    • Springer-Verlag, H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser, D.R. Luke, H. Wolkowicz (Eds.)
    • Combettes P.L., Pesquet J.-C. Proximal splitting methods in signal processing. Fixed-Point Algorithms for Inverse Problems in Science and Engineering 2010, Springer-Verlag. H.H. Bauschke, R. Burachik, P.L. Combettes, V. Elser, D.R. Luke, H. Wolkowicz (Eds.).
    • (2010) Fixed-Point Algorithms for Inverse Problems in Science and Engineering
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 10
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • Cotter S., Rao B., Engan K., Kreutz-Delgado K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53(7):2477-2488.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.7 , pp. 2477-2488
    • Cotter, S.1    Rao, B.2    Engan, K.3    Kreutz-Delgado, K.4
  • 11
    • 0027113845 scopus 로고
    • On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
    • Eckstein J., Bertsekas D. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Programming 1992, 5:293-318.
    • (1992) Math. Programming , vol.5 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.2
  • 12
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad M., Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 54:3736-3745.
    • (2006) IEEE Trans. Image Process. , vol.54 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 14
    • 77949275427 scopus 로고    scopus 로고
    • Applications of Lagrangian-based Alternating Direction Methods and Connections to Split Bregman
    • Technical Report, University of California, Irvine
    • E. Esser, Applications of Lagrangian-based Alternating Direction Methods and Connections to Split Bregman, Technical Report, University of California, Irvine, 2009.
    • (2009)
    • Esser, E.1
  • 17
    • 36749019495 scopus 로고    scopus 로고
    • Recovery algorithms for vector valued data with joint sparsity constraints
    • Fornasier M., Rauhut H. Recovery algorithms for vector valued data with joint sparsity constraints. SIAM J. Numer. Anal. 2008, 46(2):577-613.
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 577-613
    • Fornasier, M.1    Rauhut, H.2
  • 21
    • 79953050592 scopus 로고    scopus 로고
    • Soft-competitive learning of sparse codes and its application to image reconstruction
    • Labusch K., Barth E., Martinetz T. Soft-competitive learning of sparse codes and its application to image reconstruction. Neurocomputing 2011, 74(9):1418-1428.
    • (2011) Neurocomputing , vol.74 , Issue.9 , pp. 1418-1428
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 24
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mairal J., Bach F., Ponce J., Sapiro G. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 2010, 11:19-60.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 26
    • 0000276924 scopus 로고
    • Proximité et dualité dans un espace hilbertien
    • Moreau J.-J. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 1965, 93:273-299.
    • (1965) Bull. Soc. Math. France , vol.93 , pp. 273-299
    • Moreau, J.-J.1
  • 28
    • 81255182168 scopus 로고    scopus 로고
    • Parallel proximal algorithm for image restoration using hybrid regularization
    • Pustelnik N., Chaux C., Pesquet J.-C. Parallel proximal algorithm for image restoration using hybrid regularization. IEEE Trans. Image Process. 2011, 20(9):2450-2462.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.9 , pp. 2450-2462
    • Pustelnik, N.1    Chaux, C.2    Pesquet, J.-C.3
  • 29
    • 79952039898 scopus 로고    scopus 로고
    • Surveying and comparing simultaneous sparse approximation (or group Lasso) algorithms
    • Rakotomamonjy A. Surveying and comparing simultaneous sparse approximation (or group Lasso) algorithms. Signal Process. 2011, 91(7):1505-1526.
    • (2011) Signal Process. , vol.91 , Issue.7 , pp. 1505-1526
    • Rakotomamonjy, A.1
  • 30
    • 77949403269 scopus 로고    scopus 로고
    • Recursive least squares dictionary learning algorithm
    • Skretting K., Engan K. Recursive least squares dictionary learning algorithm. IEEE Trans. Signal Process. 2010, 58(4):2121-2130.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.4 , pp. 2121-2130
    • Skretting, K.1    Engan, K.2
  • 31
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II. convex relaxation
    • Tropp J. Algorithms for simultaneous sparse approximation. Part II. convex relaxation. Signal Process. 2006, 86:589-602.
    • (2006) Signal Process. , vol.86 , pp. 589-602
    • Tropp, J.1
  • 32
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of block coordinate descent method for nondifferentiable minimization
    • Tseng P. Convergence of block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 2001, 109:475-494.
    • (2001) J. Optim. Theory Appl. , vol.109 , pp. 475-494
    • Tseng, P.1
  • 33
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • Yaghoobi M., Blumensath T., Davies M. Dictionary learning for sparse approximations with the majorization method. IEEE Trans. Signal Process. 2009, 57(6):2178-2191.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.6 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.3
  • 34
    • 80052925177 scopus 로고    scopus 로고
    • Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction
    • Yang S., Liu Z., Wang M., Sun F., Jiao L. Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction. Neurocomputing 2011, 74(17):3193-3203.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3193-3203
    • Yang, S.1    Liu, Z.2    Wang, M.3    Sun, F.4    Jiao, L.5
  • 36
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou H. The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101(476):1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.