메뉴 건너뛰기




Volumn 74, Issue 9, 2011, Pages 1418-1428

Soft-competitive learning of sparse codes and its application to image reconstruction

Author keywords

Dictionary learning; Image reconstruction; Sparse approximation; Vector quantization

Indexed keywords

COMPETITIVE LEARNING; COMPUTATION TIME; DICTIONARY LEARNING; DISCRETE COSINE TRANSFORMATION; GRADIENT APPROACH; HAAR-WAVELETS; IMAGE ENCODING; LIMITED TRAINING DATA; NEURAL GAS; OPTIMAL DIRECTION; OVER-COMPLETE; OVERCOMPLETE DICTIONARIES; SPARSE APPROXIMATIONS; SPARSE CODES; SPARSE CODING; STATE-OF-THE-ART METHODS;

EID: 79953050592     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.02.002     Document Type: Article
Times cited : (8)

References (41)
  • 2
    • 0001308761 scopus 로고
    • Image reconstruction by the wavelet transform applied to aperture synthesis
    • Starck J.L., Bijaoui A., Lopez B., Perrier C. Image reconstruction by the wavelet transform applied to aperture synthesis. Astronomy and Astrophysics 1994, 283(1):349-360.
    • (1994) Astronomy and Astrophysics , vol.283 , Issue.1 , pp. 349-360
    • Starck, J.L.1    Bijaoui, A.2    Lopez, B.3    Perrier, C.4
  • 3
    • 0034258869 scopus 로고    scopus 로고
    • Adaptive wavelet thresholding for image denoising and compression
    • Chang S.G., Bin Y., Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing 2000, 9(9):1532-1546.
    • (2000) IEEE Transactions on Image Processing , vol.9 , Issue.9 , pp. 1532-1546
    • Chang, S.G.1    Bin, Y.2    Vetterli, M.3
  • 4
    • 79953062699 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • A.M. Bruckstein, D.L. Donoho, M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images, 2007.
    • (2007)
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 5
    • 79953045871 scopus 로고    scopus 로고
    • A wavelet tour of signal processing, The Sparse Way, third ed., Academic Press, December
    • S. Mallat, A wavelet tour of signal processing, The Sparse Way, third ed., Academic Press, December 2008.
    • (2008)
    • Mallat, S.1
  • 6
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
    • (see also IEEE Transactions on Acoustics, Speech, and Signal Processing)
    • Aharon M., Elad M., Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 2006, 54(11):4311-4322. (see also IEEE Transactions on Acoustics, Speech, and Signal Processing).
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 8
    • 59749104367 scopus 로고    scopus 로고
    • From sparse solutions of systems of equations to sparse modeling of signals and images
    • Bruckstein A.M., Donoho D.L., Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review 2009, 51(1):34-81.
    • (2009) SIAM Review , vol.51 , Issue.1 , pp. 34-81
    • Bruckstein, A.M.1    Donoho, D.L.2    Elad, M.3
  • 9
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • Donoho D.L., Elad M., Temlyakov V.N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory 2006, 52(1):6-18.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 10
    • 30844450612 scopus 로고    scopus 로고
    • A simple test to check the optimality of a sparse signal approximation
    • Gribonval R., Figueras R., Vandergheynst P. A simple test to check the optimality of a sparse signal approximation. Signal Processing 2006, 86:496-510.
    • (2006) Signal Processing , vol.86 , pp. 496-510
    • Gribonval, R.1    Figueras, R.2    Vandergheynst, P.3
  • 13
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal l1-norm near-solution approximates the sparsest near solution
    • Donoho D.L. For most large underdetermined systems of linear equations, the minimal l1-norm near-solution approximates the sparsest near solution. Communications on Pure and Applied Mathematics 2006, 59:907-934.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , pp. 907-934
    • Donoho, D.L.1
  • 14
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal l1-norm solution is also the sparsest solution
    • Donoho D.L. For most large underdetermined systems of linear equations, the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 2006, 59:797-829.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , pp. 797-829
    • Donoho, D.L.1
  • 15
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • Chen S.S., Donoho D.L., Saunders M.A. Atomic decomposition by basis pursuit. SIAM Review 2001, 43(1):129-159.
    • (2001) SIAM Review , vol.43 , Issue.1 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 18
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies I., Defrise M., De-Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 2004, 57:1413-1457.
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De-Mol, C.3
  • 19
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell C.J., Johnson D.H., Baraniuk R.G. Sparse coding via thresholding and local competition in neural circuits. Neural Computation 2008, 20:2526-2563.
    • (2008) Neural Computation , vol.20 , pp. 2526-2563
    • Rozell, C.J.1    Johnson, D.H.2    Baraniuk, R.G.3
  • 20
    • 0027814133 scopus 로고
    • Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, November
    • Y. Pati, R. Rezaiifar, P. Krishnaprasad, Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, November 1993.
    • (1993)
    • Pati, Y.1    Rezaiifar, R.2    Krishnaprasad, P.3
  • 21
  • 22
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp J.A. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory 2004, 50(10):2231-2242.
    • (2004) IEEE Transactions on Information Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 23
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • Tropp J.A., Gilbert A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 2007, 53(12):4655-4666.
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 24
    • 33847100046 scopus 로고    scopus 로고
    • A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
    • Rehn M., Sommer F.T. A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Journal of Computational Neuroscience 2007, 22(2):135-146.
    • (2007) Journal of Computational Neuroscience , vol.22 , Issue.2 , pp. 135-146
    • Rehn, M.1    Sommer, F.T.2
  • 26
    • 79953053190 scopus 로고
    • Sparse coding of natural images produces localized, oriented, bandpass receptive fields, Technical Report CCN-110-95, Department of Psychology, Cornell University, Ithaca, New York 14853
    • B. Olshausen, D. Field, Sparse coding of natural images produces localized, oriented, bandpass receptive fields, Technical Report CCN-110-95, Department of Psychology, Cornell University, Ithaca, New York 14853, 1995.
    • (1995)
    • Olshausen, B.1    Field, D.2
  • 27
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen B.A., Field D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996, 381:607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 29
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki M.S., Sejnowski T.J. Learning overcomplete representations. Neural Computation 2000, 12(2):337-365.
    • (2000) Neural Computation , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 33
    • 58849101822 scopus 로고    scopus 로고
    • Learning data representations with sparse coding neural gas, in: M. Verleysen (Ed.), Proceedings of the 16th European Symposium on Artificial Neural Networks, D-Side Publishers
    • K. Labusch, E. Barth, T. Martinetz, Learning data representations with sparse coding neural gas, in: M. Verleysen (Ed.), Proceedings of the 16th European Symposium on Artificial Neural Networks, D-Side Publishers, 2008, pp. 233-238.
    • (2008) , pp. 233-238
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 34
    • 61849103486 scopus 로고    scopus 로고
    • Sparse coding neural gas: learning of overcomplete data representations
    • Labusch K., Barth E., Martinetz T. Sparse coding neural gas: learning of overcomplete data representations. Neurocomputing 2009, 72(7-9):1547-1555.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1547-1555
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 38
    • 0027632248 scopus 로고
    • "Neural-gas" network for vector quantization and its application to time-series prediction
    • Martinetz T., Berkovich S., Schulten K. "Neural-gas" network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 1993, 4(4):558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.