메뉴 건너뛰기




Volumn 93, Issue 6, 2013, Pages 1608-1623

On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization

Author keywords

Incremental learning; IOPNMF; NMF; Occlusion handling; On line learning; Parts based representation; Visual tracking

Indexed keywords

INCREMENTAL LEARNING; IOPNMF; NMF; OCCLUSION HANDLING; ONLINE LEARNING; PARTS-BASED REPRESENTATION; VISUAL TRACKING;

EID: 84875252824     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2012.07.015     Document Type: Article
Times cited : (56)

References (51)
  • 1
    • 0027980942 scopus 로고
    • Recognition of objects and their component parts: Responses of single units in the temporal cortex of macaque
    • E. Wachsmuth, M. Oram, and D. Rerrett Recognition of objects and their component parts: responses of single units in the temporal cortex of macaque Cerebral Cortex 4 1994 509 522
    • (1994) Cerebral Cortex , vol.4 , pp. 509-522
    • Wachsmuth, E.1    Oram, M.2    Rerrett, D.3
  • 2
    • 49449120034 scopus 로고    scopus 로고
    • Hierarchical structure in perceptual representation
    • S. Palmer Hierarchical structure in perceptual representation Cognitive Psychology 9 1997 441 474
    • (1997) Cognitive Psychology , vol.9 , pp. 441-474
    • Palmer, S.1
  • 3
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee, and H. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 1999 788 791
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 7
    • 77955303756 scopus 로고    scopus 로고
    • Blind separation of non-negative source signals using multiplicative updates and subspace projection
    • A. Bertrand, and M. Moonen Blind separation of non-negative source signals using multiplicative updates and subspace projection Signal Processing 90 10 2010 2877 2890
    • (2010) Signal Processing , vol.90 , Issue.10 , pp. 2877-2890
    • Bertrand, A.1    Moonen, M.2
  • 8
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • MIT Press, Cambridge, MA
    • D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, vol. 13, 2001, pp. 556-562.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 9
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • C.-J. Lin Projected gradient methods for nonnegative matrix factorization Neural Computation 19 10 2007 2756 2779
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 10
    • 77950299288 scopus 로고    scopus 로고
    • Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications
    • Z. Liang, Y. Li, and T. Zhao Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications Signal Processing 90 7 2010 2150 2163
    • (2010) Signal Processing , vol.90 , Issue.7 , pp. 2150-2163
    • Liang, Z.1    Li, Y.2    Zhao, T.3
  • 11
    • 67049160153 scopus 로고    scopus 로고
    • Toward faster nonnegative matrix factorization: A new algorithm and comparisons
    • J. Kim, H. Park, Toward faster nonnegative matrix factorization: a new algorithm and comparisons, in: IEEE International Conference on Data Mining, 2008, pp. 353-362.
    • (2008) IEEE International Conference on Data Mining , pp. 353-362
    • Kim, J.1    Park, H.2
  • 12
    • 80054699905 scopus 로고    scopus 로고
    • Inexact block coordinate descent methods with application to the nonnegative matrix factorization
    • S. Bonettini Inexact block coordinate descent methods with application to the nonnegative matrix factorization IMA Journal of Numerical Analysis 31 4 2011 1431 1452
    • (2011) IMA Journal of Numerical Analysis , vol.31 , Issue.4 , pp. 1431-1452
    • Bonettini, S.1
  • 14
    • 84861164231 scopus 로고    scopus 로고
    • Nenmf an optimal gradient method for nonnegative matrix factorization
    • N. Guan, D. Tao, Z. Luo, and B. Yuan Nenmf an optimal gradient method for nonnegative matrix factorization IEEE Transactions on Signal Processing 60 6 2012 2882 2898
    • (2012) IEEE Transactions on Signal Processing , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 16
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • N. Guan, D. Tao, Z. Luo, and B. Yuan Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent IEEE Transactions on Image Processing 20 7 2011 2030 2048
    • (2011) IEEE Transactions on Image Processing , vol.20 , Issue.7 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 17
    • 58249090788 scopus 로고    scopus 로고
    • Incremental subspace learning via non-negative matrix factorization
    • S.S. Bucak, and B. Günsel Incremental subspace learning via non-negative matrix factorization Pattern Recognition 42 5 2009 788 797
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 788-797
    • Bucak, S.S.1    Günsel, B.2
  • 19
    • 83455221032 scopus 로고    scopus 로고
    • Online algorithms for nonnegative matrix factorization with the Itakura-Saito divergence
    • A. Lefevre, F. Bach, C. Févotte, Online algorithms for nonnegative matrix factorization with the Itakura-Saito divergence, in: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2011, pp. 313-316.
    • (2011) IEEE Workshop on Applications of Signal Processing to Audio and Acoustics , pp. 313-316
    • A. Lefevre1
  • 21
    • 79953821926 scopus 로고    scopus 로고
    • Online blind source separation using incremental nonnegative matrix factorization with volume constraint
    • G. Zhou, Z. Yang, S. Xie, and J.-M. Yang Online blind source separation using incremental nonnegative matrix factorization with volume constraint IEEE Transactions on Neural Networks 22 4 2011 550 560
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.4 , pp. 550-560
    • Zhou, G.1    Yang, Z.2    Xie, S.3    Yang, J.-M.4
  • 23
    • 84857336717 scopus 로고    scopus 로고
    • Efficient document clustering via online nonnegative matrix factorizations
    • F. Wang, P. Li, A. C. König, Efficient document clustering via online nonnegative matrix factorizations, in: IEEE International Conference on Data Mining, 2011, pp. 908-919.
    • (2011) IEEE International Conference on Data Mining , pp. 908-919
    • F. Wang1
  • 25
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer Non-negative matrix factorization with sparseness constraints Journal of Machine Learning Research 5 2004 1457 1469
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 27
    • 84863077428 scopus 로고    scopus 로고
    • Incremental orthogonal projective non-negative matrix factorization and its applications
    • D. Wang, H. Lu, Incremental orthogonal projective non-negative matrix factorization and its applications, in: IEEE International Conference on Image Processing, 2011, pp. 2117-2120.
    • (2011) IEEE International Conference on Image Processing , pp. 2117-2120
    • Wang, D.1    Lu, H.2
  • 28
    • 77951938107 scopus 로고    scopus 로고
    • Linear and nonlinear projective nonnegative matrix factorization
    • Z. Yang, and E. Oja Linear and nonlinear projective nonnegative matrix factorization IEEE Transactions on Neural Networks 21 5 2010 734 749
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.5 , pp. 734-749
    • Yang, Z.1    Oja, E.2
  • 29
    • 84875235357 scopus 로고    scopus 로고
    • ORLDatabase, 〈 http://www.uk.research.att.com/facedatabase.html 〉.
    • ORLDatabase
  • 30
    • 0032045780 scopus 로고    scopus 로고
    • The Feret database and evaluation procedure for face recognition algorithms
    • P.J. Phillips, H. Wechsler, J. Huang, and P. Rauss The Feret database and evaluation procedure for face recognition algorithms Image and Vision Computing 16 3 1998 295 306
    • (1998) Image and Vision Computing , vol.16 , Issue.3 , pp. 295-306
    • Phillips, P.J.1    Wechsler, H.2    Huang, J.3    Rauss, P.4
  • 31
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D.L. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts? in: Advances in Neural Information Processing Systems, 2003, pp. 1141-1148.
    • (2003) Advances in Neural Information Processing Systems , pp. 1141-1148
    • Donoho, D.L.1    Stodden, V.2
  • 32
    • 84944401145 scopus 로고    scopus 로고
    • Color-based probabilistic tracking
    • P. Pérez, C. Hue, J. Vermaak, M. Gangnet, Color-based probabilistic tracking, in: European Conference on Computer Vision, 2002, pp. 661-675.
    • (2002) European Conference on Computer Vision , pp. 661-675
    • P. Pérez1
  • 41
    • 80053330652 scopus 로고    scopus 로고
    • Recent advances and trends in visual tracking a review
    • H. Yang, L. Shao, F. Zheng, L. Wang, and Z. Song Recent advances and trends in visual tracking a review Neurocomputing 74 18 2011 3823 3831
    • (2011) Neurocomputing , vol.74 , Issue.18 , pp. 3823-3831
    • Yang, H.1    Shao, L.2    Zheng, F.3    Wang, L.4    Song, Z.5
  • 42
    • 0032136153 scopus 로고    scopus 로고
    • Condensation - Conditional density propagation for visual tracking
    • M. Isard, and A. Blake Condensation - conditional density propagation for visual tracking International Journal of Computer Vision 29 1 1998 5 28
    • (1998) International Journal of Computer Vision , vol.29 , Issue.1 , pp. 5-28
    • Isard, M.1    Blake, A.2
  • 50
    • 84875236102 scopus 로고    scopus 로고
    • CAVIAR
    • CAVIAR, 〈 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/ 〉.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.