-
1
-
-
0035683536
-
Learning spatially localized, parts-based representation
-
IEEE
-
S.Z. Li, X.W. Hou, and H.J. Zhang et al, "Learning spatially localized, parts-based representation," in CVPR. IEEE, 2001, vol. 1, pp. 207-212.
-
(2001)
CVPR
, vol.1
, pp. 207-212
-
-
Li, S.Z.1
Hou, X.W.2
Zhang, H.J.3
-
2
-
-
33947675352
-
New algorithms for nonnegative matrix factorization in applications to blind source separation
-
IEEE
-
A. Cichocki, R. Zdunek, and S. Amari, "New algorithms for nonnegative matrix factorization in applications to blind source separation,"in ICASSP. IEEE, 2006.
-
(2006)
ICASSP
-
-
Cichocki, A.1
Zdunek, R.2
Amari, S.3
-
3
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
D.D. Lee and H.S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, pp. 788-791, 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
4
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
MIT Press
-
D.D. Lee and H.S. Seung, "Algorithms for non-negative matrix factorization,"in NIPS. MIT Press, 2001, vol. 13, pp. 556-562.
-
(2001)
NIPS
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
5
-
-
35548969471
-
Projected gradient methods for nonnegative matrix factorization
-
C.J. Lin, "Projected gradient methods for nonnegative matrix factorization,"Neural Computation, vol. 19, pp. 2756-2279, 2007.
-
(2007)
Neural Computation
, vol.19
, pp. 2756-12279
-
-
Lin, C.J.1
-
6
-
-
67049155384
-
Non-negative matrix factorization on manifold
-
IEEE
-
D. Cai, X.F. He, and X.Y. Wu, "Non-negative matrix factorization on manifold," in ICDM. IEEE, 2008.
-
(2008)
ICDM
-
-
Cai, D.1
He, X.F.2
Wu, X.Y.3
-
7
-
-
58249090788
-
Incremental subspace learning via nonnegative matrix factorization
-
S.S. Bucak and B. Gunsel, "Incremental subspace learning via nonnegative matrix factorization," Pattern Recognition, vol. 42, pp. 788-797, 2009.
-
(2009)
Pattern Recognition
, vol.42
, pp. 788-797
-
-
Bucak, S.S.1
Gunsel, B.2
-
8
-
-
84945251718
-
Local non-negative matrix factorization as a visual representation
-
IEEE
-
F. Tao, S.Z. Li, and H.Y. Shum et al, "Local non-negative matrix factorization as a visual representation," in ICDL. IEEE, 2002.
-
(2002)
ICDL
-
-
Tao, F.1
Li, S.Z.2
Shum, H.Y.3
-
9
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
P.O. Hoyer, "Non-negative matrix factorization with sparseness constraints,"Journal of Machine Learning Research, vol. 5, pp. 1457-1469, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
10
-
-
77951938107
-
Linear and nonlinear projective nonnegative matrix factorization
-
Z.R. Yang and E. Oja, "Linear and nonlinear projective nonnegative matrix factorization," IEEE Transactions on Neural Networks, vol. 21, pp. 734-749, 2010.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, pp. 734-749
-
-
Yang, Z.R.1
Oja, E.2
-
11
-
-
39749173057
-
Incremental learning for robust visual tracking
-
DOI 10.1007/s11263-007-0075-7, Special issue on Machine Learning for Vision, Guest Editors: William Freeman, Pietro Perona and Bernhard Scholkopf
-
D. Ross, J. Lim, R.S. Lin, and M.H. Yang, "Incremental learning for robust visual tracking," IJCV, vol. 77, pp. 125-141, 2008. (Pubitemid 351294740)
-
(2008)
International Journal of Computer Vision
, vol.77
, Issue.1-3
, pp. 125-141
-
-
Ross, D.A.1
Lim, J.2
Lin, R.-S.3
Yang, M.-H.4
|