메뉴 건너뛰기




Volumn 45, Issue 2, 2013, Pages

A survey of cost-sensitive decision tree induction algorithms

Author keywords

cost sensitive learning; data mining; Decision tree learning

Indexed keywords

COST-SENSITIVE; COST-SENSITIVE LEARNING; DECISION TREE INDUCTION; DECISION TREE LEARNING; MISCLASSIFICATIONS; REFERENCE POINTS;

EID: 84875204064     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/2431211.2431215     Document Type: Review
Times cited : (166)

References (91)
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • BAUER, E. AND KOHAVI, R. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Mach. Learn. 36, 1-2, 105-139
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 84957107950 scopus 로고    scopus 로고
    • Pruning Decision Trees with Misclassification Costs
    • Machine Learning: ECML-98
    • BRADFORD, J. P., KUNZ, C., KOHAVI, R., BRUNK, C., AND BRODLEY, C. E. 1998a. Pruning decision trees with misclassification costs. In Proceedings of the 10th European Conference on Machine Learning (ECML '98). 131-136 (Pubitemid 128067177)
    • (1998) Lecture Notes in Computer Science , Issue.1398 , pp. 131-136
    • Bradford, J.P.1    Kunz, C.2    Kohavi, R.3    Brunk, C.4    Brodley, C.E.5
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • BREIMAN, L. 1996. Bagging predictors. Mach. Learn. 24, 2, 123-140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0035361059 scopus 로고    scopus 로고
    • Look-ahead based fuzzy decision tree induction
    • DOI 10.1109/91.928742, PII S1063670601045349
    • DONG, M. AND KOTHARI, R. 2001. LOOK-AHEAD BASED FUZZY DECISION TREE INDUCTION. IEEE Trans. Fuzzy Syst. 9, 3, 461-468 (Pubitemid 32636663)
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.3 , pp. 461-468
    • Dong, M.1    Kothari, R.2
  • 15
    • 55349084778 scopus 로고    scopus 로고
    • Anytime induction of low-cost, low-error classifiers: A sampling-based approach
    • ESMEIR, S. AND MARKOVITCH, S. 2008. Anytime induction of low-cost, low-error classifiers: A sampling-based approach. J. Artif. Intell. Res. 33, 1-31
    • (2008) J. Artif. Intell. Res. , vol.33 , pp. 1-31
    • Esmeir, S.1    Markovitch, S.2
  • 17
    • 79958819318 scopus 로고    scopus 로고
    • Anytime learning of anycost classifiers
    • ESMEIR, S. AND MARKOVITCH, S. 2011. Anytime learning of anycost classifiers. Mach. Learn. 82, 3, 445-473
    • (2011) Mach. Learn. , vol.82 , Issue.3 , pp. 445-473
    • Esmeir, S.1    Markovitch, S.2
  • 26
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • FREUND, Y. AND SCHAPIRE, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55, 1, 119-139 (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 27
    • 84875138574 scopus 로고
    • Naval Research Laboratory, Washington, DC. GREINER, R., GROVE, A. J., AND ROTH, D. 2002. Learning class-sensitive active classifiers. Art. Intell.
    • GREFENSTETTE, J. J. 1990. A User's Guide to GENESIS v5.0. Naval Research Laboratory, Washington, DC. GREINER, R., GROVE, A. J., AND ROTH, D. 2002. Learning class-sensitive active classifiers. Art. Intell. 139, 2, 137-174
    • (1990) A User's Guide to GENESIS v5.0 , vol.139 , Issue.2 , pp. 137-174
    • Grefenstette, J.J.1
  • 28
    • 0001522623 scopus 로고
    • Experience in the use of an inductive system in knowledge engineering
    • M. A. Bramer, Ed., Cambridge University Press
    • HART, A. E. 1985. Experience in the use of an inductive system in knowledge engineering. In Research and Development in Expert Systems. M. A. Bramer, Ed., Cambridge University Press
    • (1985) Research and Development in Expert Systems
    • Hart, A.E.1
  • 37
    • 70350772567 scopus 로고    scopus 로고
    • A new cost-sensitive decision tree with missing values
    • LIU, X. 2007. A new cost-sensitive decision tree with missing values. Asian J. Inf. Technol. 6, 11, 1083-1090
    • (2007) Asian J. Inf. Technol. , vol.6 , Issue.11 , pp. 1083-1090
    • Liu, X.1
  • 38
    • 79960260907 scopus 로고    scopus 로고
    • An empirical comparison of cost-sensitive decision tree induction algorithms
    • LOMAX, S. AND VADERA, S. 2011. An empirical comparison of cost-sensitive decision tree induction algorithms. Expert Syst. J. Knowl. Engin. 28, 3, 227-268
    • (2011) Expert Syst. J. Knowl. Engin. , vol.28 , Issue.3 , pp. 227-268
    • Lomax, S.1    Vadera, S.2
  • 42
    • 0037368936 scopus 로고    scopus 로고
    • Automatic model selection in cost-sensitive boosting
    • DOI 10.1016/S1566-2535(02)00100-8, PII S1566253502001008
    • MERLER, S., FURLANELLO, C., LARCHER, B., AND SBONER, A. 2003. Automatic model selection in cost-sensitive boosting. Inf. Fusion 4, 1, 3-10 (Pubitemid 36210677)
    • (2003) Information Fusion , vol.4 , Issue.1 , pp. 3-10
    • Merler, S.1    Furlanello, C.2    Larcher, B.3    Sboner, A.4
  • 43
    • 33947284406 scopus 로고    scopus 로고
    • Boosted classification trees and class probability/quantile estimation
    • MEASE, D., WYNER, A. J., AND BUJA, A. 2007. Boosted classification trees and class probability/quantile estimation. J. Mach. Learn. Res. 8, 409-439 (Pubitemid 46434120)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 409-439
    • Mease, D.1    Wyner, A.J.2    Buja, A.3
  • 44
  • 46
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • MINGERS, J. 1989. An empirical comparison of pruning methods for decision tree induction. Mach. Learn. 4, 227-243
    • (1989) Mach. Learn. , vol.4 , pp. 227-243
    • Mingers, J.1
  • 47
    • 28444480130 scopus 로고    scopus 로고
    • Learning to predict channel stability using biogeomorphic features
    • DOI 10.1016/j.ecolmodel.2005.08.011, PII S0304380005003480
    • MORET, S., LANGFORD, W., ANDMARGINEANTU, D. 2006. Learning to predict channel stability using biogeomorphic features. Ecol. Model. 191, 1, 47-57 (Pubitemid 41735451)
    • (2006) Ecological Modelling , vol.191 , Issue.1 , pp. 47-57
    • Moret, S.L.1    Langford, W.T.2    Margineantu, D.D.3
  • 49
  • 51
    • 70449428540 scopus 로고    scopus 로고
    • Learning classification rules under multiple costs
    • NI, A., ZHANG, S., YANG, S., AND ZHU, X. 2005. Learning classification rules under multiple costs. Asian J. Inf. Technol. 4, 1080-1085
    • (2005) Asian J. Inf. Technol. , vol.4 , pp. 1080-1085
    • I, A.N.1    Zhang, S.2    Yang, S.3    Zhu, X.4
  • 54
    • 0026154832 scopus 로고
    • Use of background knowledge in decision tree induction
    • DOI 10.1023/A:1022609710832
    • NúNEZ, M. 1991. The use of background knowledge in decision tree induction. Mach. Learn. 6, 231-250 (Pubitemid 21737707)
    • (1991) Machine Learning , vol.6 , Issue.3 , pp. 231-250
    • Nunez Marlon1
  • 57
    • 84875138854 scopus 로고    scopus 로고
    • http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle: Reducing+misclassification+costs#0
  • 58
    • 22944480876 scopus 로고    scopus 로고
    • Cost-sensitive decision trees with multiple cost scales
    • AI 2004: Advances in Artificial Intelligence - 17th Australian Joint Conference on Artificial Intelligence, Proceedings
    • QIN, Z., ZHANG, S., AND ZHANG, C. 2004. Cost-Sensitive decision trees with multiple cost scales. In Proceedings of the 17th Austrailian Joint Conference on Artificial Intelligence. G. I. Webb and X. Yu, Eds., Lecture Notes in Artificial Intelligence, vol. 3339, Springer, 380-390 (Pubitemid 41050369)
    • (2004) Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) , vol.3339 , pp. 380-390
    • Qin, Z.1    Zhang, S.2    Zhang, C.3
  • 59
    • 0002442571 scopus 로고
    • Discovering rules by induction from large collections of examples
    • D. Michie, Ed., Edinburgh University Press
    • QUINLAN, J. R. 1979. Discovering rules by induction from large collections of examples. In Expert Systems in the Micro Electronic Age, D. Michie, Ed., Edinburgh University Press, 168-201
    • (1979) Expert Systems in the Micro Electronic Age , pp. 168-201
    • Quinlan, J.R.1
  • 60
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess end games
    • Michalski, Garbonell and Mitchell Eds., Tioga Publishing Company, Palo Alto, CA
    • QUINLAN, J. R. 1983. Learning efficient classification procedures and their application to chess end games. In Machine Learning: An Artificial Intelligence Approach, Michalski, Garbonell and Mitchell Eds., Tioga Publishing Company, Palo Alto, CA
    • (1983) Machine Learning: An Artificial Intelligence Approach
    • Quinlan, J.R.1
  • 61
    • 33744584654 scopus 로고
    • Induction of decision trees
    • QUINLAN, J. R. 1986. Induction of decision trees. Mach. Learn. 1, 81-106
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 64
    • 0344751347 scopus 로고
    • Inductive knowledge acquisition: A case study
    • J. Ross Quinlan, Ed., Turning Institute Press/Addison-Wesley
    • QUINLAN, J. R., COMPTON, P. J., HORN, K. A., AND LAZARUS, L. 1987. Inductive knowledge acquisition: A case study. In Application of Expert Systems, J. Ross Quinlan, Ed., Turning Institute Press/Addison-Wesley, 137-156
    • (1987) Application of Expert Systems , pp. 137-156
    • Quinlan, J.R.1    Compton, P.J.2    Horn, K.A.3    Lazarus, L.4
  • 65
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • RISSANEN, J. 1978. Modelling by shortest data description. Automatica, 14, 465-471
    • (1978) Automatica, 14 , pp. 465-471
    • Rissanen, J.1
  • 67
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • DOI 10.1023/A:1007614523901
    • SCHAPIRE, R. E. AND SINGER, Y. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learn. 37, 3, 297-336 (Pubitemid 32210620)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 68
    • 84856043672 scopus 로고
    • The mathematical theory of communication
    • SHANNON, C. E. 1948. The mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 71
    • 0034294901 scopus 로고    scopus 로고
    • Better decisions through science
    • SWETS, J., DAWES, R., AND MONAHAN, J. 2000. Better decisions through science. Sci. Amer. 283, 4, 82-87
    • (2000) Sci. Amer. , vol.283 , Issue.4 , pp. 82-87
    • Swets, J.1    Dawes, R.2    Monahan, J.3
  • 72
    • 0027682298 scopus 로고
    • Cost-sensitive learning of classification knowledge and its applications in robotics
    • TAN, M. 1993. Cost-sensitive learning of classification knowledge and its applications in robotics. Machine Learn. 13, 7-33
    • (1993) Machine Learn. , vol.13 , pp. 7-33
    • Tan, M.1
  • 75
    • 84957062500 scopus 로고    scopus 로고
    • Boosting Trees for Cost-Sensitive Classifications
    • Machine Learning: ECML-98
    • TING, K. M. AND ZHENG, Z. 1998b. Boosting trees for cost-sensitive classifications. In Proceedings of the 10th European Conference on Machine Learning. Springer, 190-195 (Pubitemid 128067184)
    • (1998) Lecture Notes in Computer Science , Issue.1398 , pp. 190-195
    • Ting, K.M.1    Zheng, Z.2
  • 76
    • 84947759699 scopus 로고    scopus 로고
    • Inducing Cost-Sensitive Trees via Instance Weighting
    • Principles of Data Mining and Knowledge Discovery
    • TING, K. M. 1998. Inducing cost-sensitive decision trees via instance weighting. In Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery. Springer, 139-147 (Pubitemid 128145830)
    • (1998) Lecture Notes in Computer Science , Issue.1510 , pp. 139-147
    • Ting, K.M.1
  • 79
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • DOI 10.1109/TKDE.2002.1000348
    • TING, K. M. 2002. An instance-weighting method to induce cost-sensitive decision trees. IEEE Trans. Knowl. Data Engin. 14, 3, 659-665 (Pubitemid 34669622)
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 80
    • 0000865580 scopus 로고
    • Cost-Sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • TURNEY, P. D. 1995. Cost-Sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. J. Artif. Intell. Res. 2, 369-409
    • (1995) J. Artif. Intell. Res. , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 82
    • 33745182915 scopus 로고    scopus 로고
    • Inducing safer oblique trees without costs
    • DOI 10.1111/j.1468-0394.2005.00311.x
    • VADERA, S. 2005b. Inducing safer oblique trees without costs. Expert Syst: Int. J. Knowl. Engin. Neural Netw. 22, 4, 206-221 (Pubitemid 43906931)
    • (2005) Expert Systems , vol.22 , Issue.4 , pp. 206-221
    • Vadera, S.1
  • 83
    • 77953193051 scopus 로고    scopus 로고
    • CSNL: A cost-sensitive non-linear decision tree algorithm
    • VADERA, S. 2010. CSNL: A cost-sensitive non-linear decision tree algorithm. ACM Trans. Knowl. Discov. Data 4, 2, 1-25
    • (2010) ACM Trans. Knowl. Discov. Data , vol.4 , Issue.2 , pp. 1-25
    • Vadera, S.1
  • 84
    • 0003087344 scopus 로고
    • Various techniques used in connection with random digits. Monte carlo methods
    • VON NEUMANN, J. 1951. Various techniques used in connection with random digits. Monte carlo methods. Nat. Bureau Standards 12, 36-38
    • (1951) Nat. Bureau Standards , vol.12 , pp. 36-38
    • Von Neumann, J.1
  • 87
    • 84875189870 scopus 로고    scopus 로고
    • http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.7947
  • 90
    • 38348999247 scopus 로고    scopus 로고
    • Cost-Time sensitive decision tree with missing values
    • ZHANG, S., ZHU, X., ZHANG, J., AND ZHANG, C. 2007. Cost-Time sensitive decision tree with missing values. Knowl. Sci., Engin. Manag. 4798, 447-459
    • (2007) Knowl. Sci., Engin. Manag. , vol.4798 , pp. 447-459
    • Zhang, S.1    Zhu, X.2    Zhang, J.3    Zhang, C.4
  • 91
    • 77955227108 scopus 로고    scopus 로고
    • Cost-Sensitive classification with respect to waiting cost
    • ZHANG, S. 2010. Cost-Sensitive classification with respect to waiting cost. Knowl Based Syst. 23, 5, 369-378.
    • (2010) Knowl Based Syst. , vol.23 , Issue.5 , pp. 369-378
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.