-
1
-
-
12244287068
-
An iterative method for multi-class cost-sensitive learning
-
W. Kim, R. Kohavi, J, J. Gehrke, and W. DuMouchel, Eds., 3
-
ABE, N., ZADROZNY, B., AND LANGFORD, J. 2004. An iterative method for multi-class cost-sensitive learning. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '04). W. Kim, R. Kohavi, J, J. Gehrke, and W. DuMouchel, Eds., 3
-
(2004)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '04)
-
-
Abe, N.1
Zadrozny, B.2
Langford, J.3
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
BAUER, E. AND KOHAVI, R. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Mach. Learn. 36, 1-2, 105-139
-
(1999)
Mach. Learn.
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
84957107950
-
Pruning Decision Trees with Misclassification Costs
-
Machine Learning: ECML-98
-
BRADFORD, J. P., KUNZ, C., KOHAVI, R., BRUNK, C., AND BRODLEY, C. E. 1998a. Pruning decision trees with misclassification costs. In Proceedings of the 10th European Conference on Machine Learning (ECML '98). 131-136 (Pubitemid 128067177)
-
(1998)
Lecture Notes in Computer Science
, Issue.1398
, pp. 131-136
-
-
Bradford, J.P.1
Kunz, C.2
Kohavi, R.3
Brunk, C.4
Brodley, C.E.5
-
5
-
-
49349092366
-
-
BRADFORD, J. P., KUNZ, C., KOHAVI, R., BRUNK, C., AND BRODLEY, C. E. 1998b. Pruning decision trees with misclassification costs. http://robotics. stanford.edu/?ronnyk/prune-long.ps.gz
-
(1998)
Pruning decision trees with misclassification costs
-
-
Bradford, J.P.1
Kunz, C.2
Kohavi, R.3
Brunk, C.4
Brodley, C.E.5
-
6
-
-
0003802343
-
-
Chapman and Hall/CRC, London
-
BREIMAN, L., FRIEDMAN J. H., OLSEN R. A., AND STONE C. J. 1984. Classification and Regression Trees. Chapman and Hall/CRC, London.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olsen, R.A.3
Stone, C.J.4
-
7
-
-
0030211964
-
Bagging predictors
-
BREIMAN, L. 1996. Bagging predictors. Mach. Learn. 24, 2, 123-140 (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
33750322282
-
Cost-sensitive decision tree learning for forensic classification
-
Machine Learning: ECML 2006 - 17th European Conference on Machine Learning, Proceedings LNAI
-
DAVIS, J. V., JUNGWOO, H., AND ROSSBACH, C. J. 2006. Cost-Sensitive decision tree learning for forensic classification. In Proceedings of 17th European Conference on Machine Learning (ECML). Lecture Notes in Computer Science, vol. 4212, Springer, 622-629 (Pubitemid 44618870)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4212
, pp. 622-629
-
-
Davis, J.V.1
Ha, J.2
Rossbach, C.J.3
Ramadan, H.E.4
Witchel, E.5
-
10
-
-
0035361059
-
Look-ahead based fuzzy decision tree induction
-
DOI 10.1109/91.928742, PII S1063670601045349
-
DONG, M. AND KOTHARI, R. 2001. LOOK-AHEAD BASED FUZZY DECISION TREE INDUCTION. IEEE Trans. Fuzzy Syst. 9, 3, 461-468 (Pubitemid 32636663)
-
(2001)
IEEE Transactions on Fuzzy Systems
, vol.9
, Issue.3
, pp. 461-468
-
-
Dong, M.1
Kothari, R.2
-
11
-
-
0028498902
-
Goal-Directed classification using linear machine decision trees
-
DRAPER, B. A., BRODLEY, C. E., AND UTGOFF, P. E. 1994. Goal-Directed classification using linear machine decision trees. IEEE Trans. Pattern Anal. Mach. Intell. 16, 9, 888-893
-
(1994)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.16
, Issue.9
, pp. 888-893
-
-
Draper, B.A.1
Brodley, C.E.2
Utgoff, P.E.3
-
13
-
-
14344253489
-
Lookahead-based algorithms for anytime induction of decision trees
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
ESMEIR, S. AND MARKOVITCH, S. 2004. Lookahead-Based algorithms for anytime induction of decision trees. In Proceedings of the 21st International Conference on Machine Learning (ICML '04). C. E. Brodley, Ed., 257-264 (Pubitemid 40290816)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 257-264
-
-
Esmeir, S.1
Markovitch, S.2
-
15
-
-
55349084778
-
Anytime induction of low-cost, low-error classifiers: A sampling-based approach
-
ESMEIR, S. AND MARKOVITCH, S. 2008. Anytime induction of low-cost, low-error classifiers: A sampling-based approach. J. Artif. Intell. Res. 33, 1-31
-
(2008)
J. Artif. Intell. Res.
, vol.33
, pp. 1-31
-
-
Esmeir, S.1
Markovitch, S.2
-
17
-
-
79958819318
-
Anytime learning of anycost classifiers
-
ESMEIR, S. AND MARKOVITCH, S. 2011. Anytime learning of anycost classifiers. Mach. Learn. 82, 3, 445-473
-
(2011)
Mach. Learn.
, vol.82
, Issue.3
, pp. 445-473
-
-
Esmeir, S.1
Markovitch, S.2
-
18
-
-
84875142161
-
Re-designing cost-sensitive decision tree learning
-
ESTRUCH, V., FERRI, C., HERNáNDEZ-ORALLO, J., AND RAMíREZ-QUINTANA, M. J. 2002. Re-designing cost-sensitive decision tree learning. In Workshop de Mineria de Datos y Aprendizaje. 33-42
-
(2002)
Workshop de Mineria de Datos y Aprendizaje
, pp. 33-42
-
-
Estruch, V.1
Ferri, C.2
Hernández-Orallo, J.3
Ramírez-Quintana, M.J.4
-
19
-
-
0013316935
-
AdaCost: Misclassification cost-sensitive boosting
-
FAN, W., STOLFO, S. J., ZHANG, J., AND CHAN, P. K. 1999. AdaCost: Misclassification cost-sensitive boosting. In Proceedings of the 16th International Conference on Machine Learning. 97-105
-
(1999)
Proceedings of the 16th International Conference on Machine Learning
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.J.2
Zhang, J.3
Chan, P.K.4
-
21
-
-
84876946359
-
Induction of decision multi-trees using levin search
-
Springer
-
FERRI-RAMíREZ, C., HERNáNDEZ, J., AND RAMIREZ, M. J. 2002. Induction of decision multi-trees using levin search. In Proceedings of the International Conference on Computational Science (ICCS '02). Lecture Notes in Computer Science, vol. 2329., Springer, 166-175
-
(2002)
Proceedings of the International Conference on Computational Science (ICCS '02). Lecture Notes in Computer Science
, vol.2329
, pp. 166-175
-
-
Ferri-Ramírez, C.1
Hernández, J.2
Ramirez, M.J.3
-
24
-
-
38049087581
-
Cost-Sensitive decision trees applied to medical data
-
Springer
-
FREITAS, A., COSTA-PEREIRA, A., AND BRAZDIL, P. 2007. Cost-Sensitive decision trees applied to medical data. In Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science, vol. 4654., Springer, 303-312
-
(2007)
Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science
, vol.4654
, pp. 303-312
-
-
Freitas, A.1
Costa-Pereira, A.2
Brazdil, P.3
-
26
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
FREUND, Y. AND SCHAPIRE, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55, 1, 119-139 (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
27
-
-
84875138574
-
-
Naval Research Laboratory, Washington, DC. GREINER, R., GROVE, A. J., AND ROTH, D. 2002. Learning class-sensitive active classifiers. Art. Intell.
-
GREFENSTETTE, J. J. 1990. A User's Guide to GENESIS v5.0. Naval Research Laboratory, Washington, DC. GREINER, R., GROVE, A. J., AND ROTH, D. 2002. Learning class-sensitive active classifiers. Art. Intell. 139, 2, 137-174
-
(1990)
A User's Guide to GENESIS v5.0
, vol.139
, Issue.2
, pp. 137-174
-
-
Grefenstette, J.J.1
-
28
-
-
0001522623
-
Experience in the use of an inductive system in knowledge engineering
-
M. A. Bramer, Ed., Cambridge University Press
-
HART, A. E. 1985. Experience in the use of an inductive system in knowledge engineering. In Research and Development in Expert Systems. M. A. Bramer, Ed., Cambridge University Press
-
(1985)
Research and Development in Expert Systems
-
-
Hart, A.E.1
-
29
-
-
0004064575
-
-
Academic Press, New York
-
HUNT, E. B., MARIN, J., AND STONE, P. J. 1966. Experiments in Induction. Academic Press, New York
-
(1966)
Experiments in Induction
-
-
Hunt, E.B.1
Marin, J.2
Stone, P.J.3
-
32
-
-
27144482125
-
Cost-sensitive classification with genetic programming
-
2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings
-
LI, J., LI, X., AND YAO, X. 2005. Cost-Sensitive classification with genetic programming. In Proceedings of the IEEE Congress on Evolutionary Computation. 2114-2121 (Pubitemid 41496111)
-
(2005)
2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings
, vol.3
, pp. 2114-2121
-
-
Li, J.1
Li, X.2
Yao, X.3
-
34
-
-
14344258878
-
Decision trees with minimal costs
-
ACM Press New York
-
LING, C. X., YANG, Q., WANG, J., AND ZHANG, S. 2004. Decision trees with minimal costs. In Proceedings of the ACM International Conference on Machine Learning. ACM Press New York
-
(2004)
Proceedings of the ACM International Conference on Machine Learning
-
-
Ling, C.X.1
Yang, Q.2
Wang, J.3
Zhang, S.4
-
35
-
-
33749562833
-
Maximum profit mining and its application in software development
-
LING, C. X., SHENG, V. S., BRUCKHAUS, T., AND MADHAVJI, N. H. 2006a. Maximum profit mining and its application in software development. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '06). 929
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '06)
, vol.929
-
-
Ling, C.X.1
Sheng, V.S.2
Bruckhaus, T.3
Madhavji, N.H.4
-
36
-
-
33746336969
-
Test strategies for cost-sensitive decision trees
-
DOI 10.1109/TKDE.2006.131, 1644729
-
LING, C., SHENG, V., AND YANG, Q. 2006b. Test strategies for cost-sensitive decision trees. IEEE Trans. Knowl. Data Engin. 18, 8, 1055-1067 (Pubitemid 44109535)
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.8
, pp. 1055-1067
-
-
Ling, C.X.1
Sheng, V.S.2
Yang, Q.3
-
37
-
-
70350772567
-
A new cost-sensitive decision tree with missing values
-
LIU, X. 2007. A new cost-sensitive decision tree with missing values. Asian J. Inf. Technol. 6, 11, 1083-1090
-
(2007)
Asian J. Inf. Technol.
, vol.6
, Issue.11
, pp. 1083-1090
-
-
Liu, X.1
-
38
-
-
79960260907
-
An empirical comparison of cost-sensitive decision tree induction algorithms
-
LOMAX, S. AND VADERA, S. 2011. An empirical comparison of cost-sensitive decision tree induction algorithms. Expert Syst. J. Knowl. Engin. 28, 3, 227-268
-
(2011)
Expert Syst. J. Knowl. Engin.
, vol.28
, Issue.3
, pp. 227-268
-
-
Lomax, S.1
Vadera, S.2
-
42
-
-
0037368936
-
Automatic model selection in cost-sensitive boosting
-
DOI 10.1016/S1566-2535(02)00100-8, PII S1566253502001008
-
MERLER, S., FURLANELLO, C., LARCHER, B., AND SBONER, A. 2003. Automatic model selection in cost-sensitive boosting. Inf. Fusion 4, 1, 3-10 (Pubitemid 36210677)
-
(2003)
Information Fusion
, vol.4
, Issue.1
, pp. 3-10
-
-
Merler, S.1
Furlanello, C.2
Larcher, B.3
Sboner, A.4
-
43
-
-
33947284406
-
Boosted classification trees and class probability/quantile estimation
-
MEASE, D., WYNER, A. J., AND BUJA, A. 2007. Boosted classification trees and class probability/quantile estimation. J. Mach. Learn. Res. 8, 409-439 (Pubitemid 46434120)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 409-439
-
-
Mease, D.1
Wyner, A.J.2
Buja, A.3
-
44
-
-
1542276975
-
An introduction to boosting and leveraging
-
S., Smola, A. Eds., Springer
-
MEIR, R. AND RäTSCH, G. 2003. An introduction to boosting and leveraging. In Advanced Lectures on Machine Learning, Mendelson, S., Smola, A. Eds., Springer, 119-184
-
(2003)
Advanced Lectures on Machine Learning, Mendelson
, pp. 119-184
-
-
Meir, R.1
Rätsch, G.2
-
46
-
-
79952785777
-
An empirical comparison of pruning methods for decision tree induction
-
MINGERS, J. 1989. An empirical comparison of pruning methods for decision tree induction. Mach. Learn. 4, 227-243
-
(1989)
Mach. Learn.
, vol.4
, pp. 227-243
-
-
Mingers, J.1
-
47
-
-
28444480130
-
Learning to predict channel stability using biogeomorphic features
-
DOI 10.1016/j.ecolmodel.2005.08.011, PII S0304380005003480
-
MORET, S., LANGFORD, W., ANDMARGINEANTU, D. 2006. Learning to predict channel stability using biogeomorphic features. Ecol. Model. 191, 1, 47-57 (Pubitemid 41735451)
-
(2006)
Ecological Modelling
, vol.191
, Issue.1
, pp. 47-57
-
-
Moret, S.L.1
Langford, W.T.2
Margineantu, D.D.3
-
49
-
-
0000229628
-
A system for induction of oblique decision trees
-
MURTHY, S., KASIF, S., AND SALZBERG, S. 1994. A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1-32
-
(1994)
J. Artif. Intell. Res.
, vol.2
, pp. 1-32
-
-
Murthy, S.1
Kasif, S.2
Salzberg, S.3
-
51
-
-
70449428540
-
Learning classification rules under multiple costs
-
NI, A., ZHANG, S., YANG, S., AND ZHU, X. 2005. Learning classification rules under multiple costs. Asian J. Inf. Technol. 4, 1080-1085
-
(2005)
Asian J. Inf. Technol.
, vol.4
, pp. 1080-1085
-
-
I, A.N.1
Zhang, S.2
Yang, S.3
Zhu, X.4
-
54
-
-
0026154832
-
Use of background knowledge in decision tree induction
-
DOI 10.1023/A:1022609710832
-
NúNEZ, M. 1991. The use of background knowledge in decision tree induction. Mach. Learn. 6, 231-250 (Pubitemid 21737707)
-
(1991)
Machine Learning
, vol.6
, Issue.3
, pp. 231-250
-
-
Nunez Marlon1
-
56
-
-
85041528332
-
Reducing misclassification costs
-
PAZZANI, M., MERZ, C., MURPHY, P., ALI, K., HUME, T., AND BRUNK, C. 1994. Reducing misclassification costs. In Proceedings of the 11th International Conference on Machine Learning. 217-225
-
(1994)
Proceedings of the 11th International Conference on Machine Learning
, pp. 217-225
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
Ali, K.4
Hume, T.5
Brunk, C.6
-
57
-
-
84875138854
-
-
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle: Reducing+misclassification+costs#0
-
-
-
-
58
-
-
22944480876
-
Cost-sensitive decision trees with multiple cost scales
-
AI 2004: Advances in Artificial Intelligence - 17th Australian Joint Conference on Artificial Intelligence, Proceedings
-
QIN, Z., ZHANG, S., AND ZHANG, C. 2004. Cost-Sensitive decision trees with multiple cost scales. In Proceedings of the 17th Austrailian Joint Conference on Artificial Intelligence. G. I. Webb and X. Yu, Eds., Lecture Notes in Artificial Intelligence, vol. 3339, Springer, 380-390 (Pubitemid 41050369)
-
(2004)
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)
, vol.3339
, pp. 380-390
-
-
Qin, Z.1
Zhang, S.2
Zhang, C.3
-
59
-
-
0002442571
-
Discovering rules by induction from large collections of examples
-
D. Michie, Ed., Edinburgh University Press
-
QUINLAN, J. R. 1979. Discovering rules by induction from large collections of examples. In Expert Systems in the Micro Electronic Age, D. Michie, Ed., Edinburgh University Press, 168-201
-
(1979)
Expert Systems in the Micro Electronic Age
, pp. 168-201
-
-
Quinlan, J.R.1
-
60
-
-
0001857179
-
Learning efficient classification procedures and their application to chess end games
-
Michalski, Garbonell and Mitchell Eds., Tioga Publishing Company, Palo Alto, CA
-
QUINLAN, J. R. 1983. Learning efficient classification procedures and their application to chess end games. In Machine Learning: An Artificial Intelligence Approach, Michalski, Garbonell and Mitchell Eds., Tioga Publishing Company, Palo Alto, CA
-
(1983)
Machine Learning: An Artificial Intelligence Approach
-
-
Quinlan, J.R.1
-
61
-
-
33744584654
-
Induction of decision trees
-
QUINLAN, J. R. 1986. Induction of decision trees. Mach. Learn. 1, 81-106
-
(1986)
Mach. Learn.
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
64
-
-
0344751347
-
Inductive knowledge acquisition: A case study
-
J. Ross Quinlan, Ed., Turning Institute Press/Addison-Wesley
-
QUINLAN, J. R., COMPTON, P. J., HORN, K. A., AND LAZARUS, L. 1987. Inductive knowledge acquisition: A case study. In Application of Expert Systems, J. Ross Quinlan, Ed., Turning Institute Press/Addison-Wesley, 137-156
-
(1987)
Application of Expert Systems
, pp. 137-156
-
-
Quinlan, J.R.1
Compton, P.J.2
Horn, K.A.3
Lazarus, L.4
-
65
-
-
0018015137
-
Modelling by shortest data description
-
RISSANEN, J. 1978. Modelling by shortest data description. Automatica, 14, 465-471
-
(1978)
Automatica, 14
, pp. 465-471
-
-
Rissanen, J.1
-
67
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
DOI 10.1023/A:1007614523901
-
SCHAPIRE, R. E. AND SINGER, Y. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learn. 37, 3, 297-336 (Pubitemid 32210620)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
68
-
-
84856043672
-
The mathematical theory of communication
-
SHANNON, C. E. 1948. The mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423
-
(1948)
Bell Syst. Tech. J.
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
70
-
-
33646408403
-
Simple test strategies for cost-sensitive decision trees. in 16th
-
Springer
-
SHENG, S., LING, C., AND YANG, Q. 2005. Simple test strategies for cost-sensitive decision trees. In 16th European Conference on Machine Learning (ECML' 05). Lecture Notes in Computer Science, vol. 3720. Springer, 365-376
-
(2005)
European Conference on Machine Learning (ECML' 05). Lecture Notes in Computer Science
, vol.3720
, pp. 365-376
-
-
Sheng, S.1
Ling, C.2
Yang, Q.3
-
71
-
-
0034294901
-
Better decisions through science
-
SWETS, J., DAWES, R., AND MONAHAN, J. 2000. Better decisions through science. Sci. Amer. 283, 4, 82-87
-
(2000)
Sci. Amer.
, vol.283
, Issue.4
, pp. 82-87
-
-
Swets, J.1
Dawes, R.2
Monahan, J.3
-
72
-
-
0027682298
-
Cost-sensitive learning of classification knowledge and its applications in robotics
-
TAN, M. 1993. Cost-sensitive learning of classification knowledge and its applications in robotics. Machine Learn. 13, 7-33
-
(1993)
Machine Learn.
, vol.13
, pp. 7-33
-
-
Tan, M.1
-
75
-
-
84957062500
-
Boosting Trees for Cost-Sensitive Classifications
-
Machine Learning: ECML-98
-
TING, K. M. AND ZHENG, Z. 1998b. Boosting trees for cost-sensitive classifications. In Proceedings of the 10th European Conference on Machine Learning. Springer, 190-195 (Pubitemid 128067184)
-
(1998)
Lecture Notes in Computer Science
, Issue.1398
, pp. 190-195
-
-
Ting, K.M.1
Zheng, Z.2
-
76
-
-
84947759699
-
Inducing Cost-Sensitive Trees via Instance Weighting
-
Principles of Data Mining and Knowledge Discovery
-
TING, K. M. 1998. Inducing cost-sensitive decision trees via instance weighting. In Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery. Springer, 139-147 (Pubitemid 128145830)
-
(1998)
Lecture Notes in Computer Science
, Issue.1510
, pp. 139-147
-
-
Ting, K.M.1
-
79
-
-
0036565589
-
An instance-weighting method to induce cost-sensitive trees
-
DOI 10.1109/TKDE.2002.1000348
-
TING, K. M. 2002. An instance-weighting method to induce cost-sensitive decision trees. IEEE Trans. Knowl. Data Engin. 14, 3, 659-665 (Pubitemid 34669622)
-
(2002)
IEEE Transactions on Knowledge and Data Engineering
, vol.14
, Issue.3
, pp. 659-665
-
-
Ting, K.M.1
-
80
-
-
0000865580
-
Cost-Sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
-
TURNEY, P. D. 1995. Cost-Sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. J. Artif. Intell. Res. 2, 369-409
-
(1995)
J. Artif. Intell. Res.
, vol.2
, pp. 369-409
-
-
Turney, P.D.1
-
82
-
-
33745182915
-
Inducing safer oblique trees without costs
-
DOI 10.1111/j.1468-0394.2005.00311.x
-
VADERA, S. 2005b. Inducing safer oblique trees without costs. Expert Syst: Int. J. Knowl. Engin. Neural Netw. 22, 4, 206-221 (Pubitemid 43906931)
-
(2005)
Expert Systems
, vol.22
, Issue.4
, pp. 206-221
-
-
Vadera, S.1
-
83
-
-
77953193051
-
CSNL: A cost-sensitive non-linear decision tree algorithm
-
VADERA, S. 2010. CSNL: A cost-sensitive non-linear decision tree algorithm. ACM Trans. Knowl. Discov. Data 4, 2, 1-25
-
(2010)
ACM Trans. Knowl. Discov. Data
, vol.4
, Issue.2
, pp. 1-25
-
-
Vadera, S.1
-
84
-
-
0003087344
-
Various techniques used in connection with random digits. Monte carlo methods
-
VON NEUMANN, J. 1951. Various techniques used in connection with random digits. Monte carlo methods. Nat. Bureau Standards 12, 36-38
-
(1951)
Nat. Bureau Standards
, vol.12
, pp. 36-38
-
-
Von Neumann, J.1
-
87
-
-
84875189870
-
-
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.7947
-
-
-
-
89
-
-
30344485118
-
"Missing is useful": Missing values in cost-sensitive decision trees
-
DOI 10.1109/TKDE.2005.188
-
ZHANG, S., QIN, Z., LING, C., AND SHENG, S. 2005. Missing is useful: Missing values in cost-sensitive decision trees. IEEE Trans. Knowl. Data Engin. 17, 12, 1689-1693 (Pubitemid 43060418)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.12
, pp. 1689-1693
-
-
Zhang, S.1
Qin, Z.2
Ling, C.X.3
Sheng, S.4
-
90
-
-
38348999247
-
Cost-Time sensitive decision tree with missing values
-
ZHANG, S., ZHU, X., ZHANG, J., AND ZHANG, C. 2007. Cost-Time sensitive decision tree with missing values. Knowl. Sci., Engin. Manag. 4798, 447-459
-
(2007)
Knowl. Sci., Engin. Manag.
, vol.4798
, pp. 447-459
-
-
Zhang, S.1
Zhu, X.2
Zhang, J.3
Zhang, C.4
-
91
-
-
77955227108
-
Cost-Sensitive classification with respect to waiting cost
-
ZHANG, S. 2010. Cost-Sensitive classification with respect to waiting cost. Knowl Based Syst. 23, 5, 369-378.
-
(2010)
Knowl Based Syst.
, vol.23
, Issue.5
, pp. 369-378
-
-
Zhang, S.1
|