메뉴 건너뛰기




Volumn 1810, Issue , 2000, Pages 413-425

An empirical study of MetaCost using boosting algorithms

Author keywords

[No Author keywords available]

Indexed keywords

MACHINE LEARNING;

EID: 84960442798     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45164-1_42     Document Type: Conference Paper
Times cited : (19)

References (9)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • Kluwer Academic Publishers
    • Bauer, E. & Kohavi, R. (1999), An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning, 36, pp. 105-139, Kluwer Academic Publishers.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Dept. of Information and Computer Science
    • Blake, C., Keogh, E. & Merz, C.J. (1998), UCI Repository of machine learning databases [http://www.ics.uci.edu/˜mlearn/MLRepository.html]. Irvine, CA: University of California, Dept. of Information and Computer Science.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Keogh, E.2    Merz, C.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.