-
2
-
-
0001868131
-
Reducing multiclass to binary: A unifying approach for margin classifiers
-
Morgan Kaufmann, San Francisco
-
ALLWEIN, E. L., SCHAPIRE, R. E., AND SINGER, Y. 2000. Reducing multiclass to binary: A unifying approach for margin classifiers. In Proceedings of the 17th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, 9-16.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning
, pp. 9-16
-
-
Allwein, E.L.1
Schapire, R.E.2
Singer, Y.3
-
3
-
-
0004223658
-
-
AI Intelligence, Oxford
-
ALTHOFF, K., AURIOL, E., BARLETTA, R., AND MANAGO, M. 1995. A Review of Industrial Case-Based Reasoning Tools. AI Intelligence, Oxford.
-
(1995)
A Review of Industrial Case-Based Reasoning Tools
-
-
Althoff, K.1
Auriol, E.2
Barletta, R.3
Manago, M.4
-
4
-
-
0032645080
-
An empirical comparison or voting classification algorithms: Bagging, boosting, and variants
-
BAUER, E. AND KOHAVI, R. 1999. An empirical comparison or voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36, 1-2, 105-139.
-
(1999)
Mach. Learn
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
5
-
-
0002935122
-
On mathmatical programming methods and support vector machines
-
A. Schoelkopf, C. Burges, and A. Smola, Eds. MIT Press, Cambridge, MA, Chapter
-
BENNETT, K. P. 1999. On mathmatical programming methods and support vector machines. In Advances in Kernel Methods-Support Vector Machines, A. Schoelkopf, C. Burges, and A. Smola, Eds. MIT Press, Cambridge, MA, Chapter 19, 307-326.
-
(1999)
Advances in Kernel Methods-Support Vector Machines
, vol.19
, pp. 307-326
-
-
Bennett, K.P.1
-
7
-
-
0003408496
-
-
University of California, Irvine
-
BLAKE, C. AND MERZ, C. 1998. UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine. http://www.ics.uci.edu/mlearn/ MLRepository.html.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.1
Merz, C.2
-
8
-
-
84957107950
-
Pruning decision trees with misclassification costs
-
Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, Berlin
-
BRADFORD, J., KUNZ, C., KOHAVI, R., BRUNK, C., AND BRODLEY, C. 1998. Pruning decision trees with misclassification costs. In Proceedings of the 10th European Conference on Machine Learning. Lecture Notes in Computer Science, No.398. Springer-Verlag, Heidelberg, Berlin, 131-136.
-
(1998)
Proceedings of the 10th European Conference on Machine Learning
, vol.398
, pp. 131-136
-
-
Bradford, J.1
Kunz, C.2
Kohavi, R.3
Brunk, C.4
Brodley, C.5
-
9
-
-
0030211964
-
Bagging predictors
-
BREIMAN, L. 1996. Bagging predictors. Mach. Learn. 24, 2, 123-140.
-
(1996)
Mach. Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
10
-
-
0003802343
-
-
Wadsworth, Belmont
-
BREIMAN, L., FRIEDMAN, J. H., OLSEN, R. A., AND STONE, C. J. 1984. Classification and Regression Trees. Wadsworth, Belmont.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olsen, R.A.3
Stone, C.J.4
-
12
-
-
0031101089
-
Simplifying decision trees: A survey
-
BRESLOW, L. AND AHA, D. 1997b. Simplifying decision trees: A survey. Knowl. Engin. Rev. 12, 1-40.
-
(1997)
Knowl. Engin. Rev
, vol.12
, pp. 1-40
-
-
Breslow, L.1
Aha, D.2
-
14
-
-
0002117591
-
A further comparison of splitting rules for decision-tree induction
-
BUNTINE, W. AND NIBLETT, T. 1992. A further comparison of splitting rules for decision-tree induction. Mach. Learn. 8, 75-85.
-
(1992)
Mach. Learn.
, vol.8
, pp. 75-85
-
-
Buntine, W.1
Niblett, T.2
-
15
-
-
0013326060
-
Feature selection for classification
-
DASH, M. AND LIU, H. 1997. Feature selection for classification. Intell. Data Anal. 1, 3, 131-156.
-
(1997)
Intell. Data Anal
, vol.1
, Issue.3
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
17
-
-
0028498902
-
Goal-directed classification using linear machine decision trees
-
DRAPER, B., BRODLEY, C. E., AND UTGOFF, P. E. 1994. Goal-directed classification using linear machine decision trees. IEEE Trans. Patt. Anal. Mach. Intel. 16, 9, 888-893.
-
(1994)
IEEE Trans. Patt. Anal. Mach. Intel
, vol.16
, Issue.9
, pp. 888-893
-
-
Draper, B.1
Brodley, C.E.2
Utgoff, P.E.3
-
18
-
-
33748991193
-
Cost curves: An improved method for visualizing classifier performance
-
DRUMMOND, C. AND HOLTE, R. 2006. Cost curves: An improved method for visualizing classifier performance. Mach. Learn. 65, 1, 95-130.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 95-130
-
-
Drummond, C.1
Holte, R.2
-
20
-
-
55349084778
-
Anytime induction of low-cost, low-error classifiers: A sampling-based approach
-
ESMEIR, S. AND MARKOVITCH, S. 2008. Anytime induction of low-cost, low-error classifiers: a sampling-based approach. J. Artif. Intel. Resear. 33, 1-31.
-
(2008)
J. Artif. Intel. Resear
, vol.33
, pp. 1-31
-
-
Esmeir, S.1
Markovitch, S.2
-
21
-
-
0031145187
-
A compartive analysis of methods for pruning decision trees
-
ESPOSITO, F.,MALERBA, D., AND SEMERARO, G. 1997. A compartive analysis of methods for pruning decision trees. IEEE Trans. Patt. Anal. Mach. Intel. 19, 5, 476-491.
-
(1997)
IEEE Trans. Patt. Anal. Mach. Intel
, vol.19
, Issue.5
, pp. 476-491
-
-
Esposito, F.1
Malerba, D.2
Semeraro, G.3
-
22
-
-
0013316935
-
AdaCost: Misclassification cost-sensitive boosting
-
Morgan Kaufmann, San Francisco
-
FAN, W., STOLFO, S., ZHANG, J., AND CHAN, P. 1999. AdaCost: Misclassification cost-sensitive boosting. In Proceedings of the 16th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, 97-105.
-
(1999)
Proceedings of the 16th International Conference on Machine Learning
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.2
Zhang, J.3
Chan, P.4
-
23
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
FISHER, R. 1936. The use of multiple measurements in taxonomic problems. Annal. Eugen. 8, 179-188.
-
(1936)
Annal. Eugen.
, vol.8
, pp. 179-188
-
-
Fisher, R.1
-
25
-
-
0022559425
-
Optimization of control parameters for genetic algorithms
-
GREFENSTETTE, J. 1986. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man, Cybern. 16, 122-128.
-
(1986)
IEEE Trans. Syst. Man, Cybern
, vol.16
, pp. 122-128
-
-
Grefenstette, J.1
-
26
-
-
0031224390
-
Use of contextual information for feature ranking and discretization
-
HONG, S. J. 1997. Use of contextual information for feature ranking and discretization. IEEE Trans. Knowl. Data Engin. 9, 718-730.
-
(1997)
IEEE Trans. Knowl. Data Engin
, vol.9
, pp. 718-730
-
-
Hong, S.J.1
-
27
-
-
33846274880
-
Cost-sensitive feature acquisition and classification
-
JI, S. AND CARIN, L. 2007. Cost-sensitive feature acquisition and classification. Patt. Recog. 40, 5, 1474-1485.
-
(2007)
Patt. Recog.
, vol.40
, Issue.5
, pp. 1474-1485
-
-
Ji, S.1
Carin, L.2
-
29
-
-
84868255873
-
Prediction-time active feature-value acquisition for customer targeting
-
KANANI, P. AND MELVILLE, P. 2008. Prediction-time active feature-value acquisition for customer targeting. In Proceedings of the Workshop on Cost Sensitive Learning. http://www. cs.iastate.edu/oksayakh/csl/accepted papers/kanani.pdf.
-
(2008)
Proceedings of the Workshop on Cost Sensitive Learning
-
-
Kanani, P.1
Melville, P.2
-
30
-
-
85027408292
-
Cost-sensitive pruning of decision trees
-
Springer-Verlag, Berlin
-
KNOLL, U., NAKHAEIZADEH, G., AND TAUSEND, B. 1994. Cost-sensitive pruning of decision trees. In Proceedings of the 8th European Conference on Machine Learning. Vol.2. Springer-Verlag, Berlin, 383-386.
-
(1994)
Proceedings of the 8th European Conference on Machine Learning
, vol.2
, pp. 383-386
-
-
Knoll, U.1
Nakhaeizadeh, G.2
Tausend, B.3
-
31
-
-
0031381525
-
Wrappers for feature subset selection
-
KOHAVI, R. AND JOHN, G. H. 1997. Wrappers for feature subset selection. Artif. Intel. 97, 1-2, 273-324.
-
(1997)
Artif. Intel.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
32
-
-
33746336969
-
Test strategies for cost-sensitive decision trees
-
LING, C., SHENG, V., AND YANG, G. 2006. Test strategies for cost-sensitive decision trees. IEEE Trans. Knowl. Data Engin. 18, 8, 1055-1067.
-
(2006)
IEEE Trans. Knowl. Data Engin
, vol.18
, Issue.8
, pp. 1055-1067
-
-
Ling, C.1
Sheng, V.2
Yang, G.3
-
33
-
-
10044229031
-
-
Ph.D. thesis, School of Electrical Engineering and Computer Science, Oregan State University, Corvallis, OR
-
MARGINEANTU, D. 2001. Methods for cost-sensitive learning. Ph.D. thesis, School of Electrical Engineering and Computer Science, Oregan State University, Corvallis, OR.
-
(2001)
Methods for Cost-sensitive Learning
-
-
Margineantu, D.1
-
34
-
-
85046873967
-
The DET curve in assessment of detection task performance
-
International Speech Communications Association
-
MARTIN, A., DODDINGTON, G., KAMM, T., ORDOWSKI, M., AND PRZYBOCKI, M. 1997. The DET curve in assessment of detection task performance. In Proceedings of Eurospeech'97. International Speech Communications Association, 1895-1898.
-
(1997)
Proceedings of Eurospeech'97
, pp. 1895-1898
-
-
Martin, A.1
Doddington, G.2
Kamm, T.3
Ordowski, M.4
Przybocki, M.5
-
36
-
-
77956005954
-
On the design of loss functions for classification: Theory, robustness to outliers, and SavageBoost
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds
-
MASNADI-SHIRAZI, H. AND VASCONCELOS, N. 2008. On the design of loss functions for classification: Theory, robustness to outliers, and SavageBoost. In Proceedings of Neural Information Processing Systems. D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds. 1049-1056.
-
(2008)
Proceedings of Neural Information Processing Systems
, pp. 1049-1056
-
-
Masnadi-Shirazi, H.1
Vasconcelos, N.2
-
37
-
-
0037368936
-
Automatic model selection in cost-sensitive boosting
-
MERLER, S., FURLANELLO, C., LARCHER, B., AND SBONER, A. 2003. Automatic model selection in cost-sensitive boosting. Inform. Fusion 4, 3-10.
-
(2003)
Inform. Fusion
, vol.4
, pp. 3-10
-
-
Merler, S.1
Furlanello, C.2
Larcher, B.3
Sboner, A.4
-
38
-
-
79952785777
-
An empirical comparison of pruning methods for decision tree induction
-
MINGERS, J. 1989. An empirical comparison of pruning methods for decision tree induction. Mach. Learn. 4, 227-243.
-
(1989)
Mach. Learn.
, vol.4
, pp. 227-243
-
-
Mingers, J.1
-
39
-
-
0000229628
-
A system for induction of oblique decision trees
-
MURTHY, S., KASIF, S., AND SALZBERG, S. 1994. A system for induction of oblique decision trees. J. Artif. Intel. Resear. 2, 1-32.
-
(1994)
J. Artif. Intel. Resear
, vol.2
, pp. 1-32
-
-
Murthy, S.1
Kasif, S.2
Salzberg, S.3
-
41
-
-
0026154832
-
The use of background knowledge in decision tree induction
-
ŃUÑEZ, M. 1991. The use of background knowledge in decision tree induction. Mach. Learn. 6, 231-250.
-
(1991)
Mach. Learn.
, vol.6
, pp. 231-250
-
-
Ńuñez, M.1
-
42
-
-
85041528332
-
Reducing misclassification costs: Knowledge-intensive approaches to learning from noisy data
-
Morgan Kaufmann, San Francisco, CA
-
PAZZANI, M., MERZ, C., MURPHY, P., ALI, K., HURNE, T., AND BRUNK, C. 1994. Reducing misclassification costs: Knowledge-intensive approaches to learning from noisy data. In Proceedings of the 11th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA, 217-225.
-
(1994)
Proceedings of the 11th International Conference on Machine Learning
, pp. 217-225
-
-
Pazzani, M.1
Merz, C.2
Murphy, P.3
Ali, K.4
Hurne, T.5
Brunk, C.6
-
43
-
-
0033879297
-
Knowledge discovery from data?
-
PAZZANI, M. J. 2000. Knowledge discovery from data? IEEE Intel. Syst. 15, 2, 10-13.
-
(2000)
IEEE Intel. Syst
, vol.15
, Issue.2
, pp. 10-13
-
-
Pazzani, M.J.1
-
44
-
-
0001834468
-
Inductive policy: The pragmatics of bias selection
-
PROVOST, F. J. AND BUCHANAN, B. G. 1995. Inductive policy: The pragmatics of bias selection. Mach. Learn. 20, 35-61.
-
(1995)
Mach. Learn.
, vol.20
, pp. 35-61
-
-
Provost, F.J.1
Buchanan, B.G.2
-
46
-
-
0023417432
-
Simplifying decision trees
-
QUINLAN, J. R. 1987. Simplifying decision trees. Int. J. Man-Mach. Stud. 27, 221-234.
-
(1987)
Int. J. Man-Mach. Stud
, vol.27
, pp. 221-234
-
-
Quinlan, J.R.1
-
48
-
-
84950658032
-
The elicitation of personal probabilities and expectations
-
SAVAGE, L. 1971. The elicitation of personal probabilities and expectations. J. Am. Statist. Ass. 66, 783-801.
-
(1971)
J. Am. Statist. Ass
, vol.66
, pp. 783-801
-
-
Savage, L.1
-
50
-
-
0027682298
-
Cost-sensitive learning of classification knowledge and its applications in robotics
-
TAN,M. 1993. Cost-sensitive learning of classification knowledge and its applications in robotics. Mach. Learn. 13, 7-33.
-
(1993)
Mach. Learn.
, vol.13
, pp. 7-33
-
-
Tan, M.1
-
51
-
-
0002804620
-
A comparative study of cost-sensitive boosting algorithms
-
Morgan Kaufmann, San Francisco
-
TING, K. 2000. A comparative study of cost-sensitive boosting algorithms. In Proceedings of the 17th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, 983-990.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning
, pp. 983-990
-
-
Ting, K.1
-
53
-
-
0000865580
-
Cost sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
-
TURNEY, P. 1995. Cost sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. J. Artif. Intel. Resear. 2, 369-409.
-
(1995)
J. Artif. Intel. Resear.
, vol.2
, pp. 369-409
-
-
Turney, P.1
-
55
-
-
33745217503
-
Inducing cost-sensitive nonlinear decision trees
-
Science and Engineering, University of Salford
-
VADERA, S. 2005a. Inducing cost-sensitive nonlinear decision trees, Tech. rep. School of Computing, Science and Engineering, University of Salford.
-
(2005)
Tech. Rep. School of Computing
-
-
Vadera, S.1
-
56
-
-
33745182915
-
Inducing safer oblique trees without costs
-
VADERA, S. 2005b. Inducing safer oblique trees without costs. Int. J. Knowl. Engin. Neural Netw. 22, 4, 206-221.
-
(2005)
Int. J. Knowl. Engin. Neural Netw
, vol.22
, Issue.4
, pp. 206-221
-
-
Vadera, S.1
-
59
-
-
84880897165
-
An empirical study of noise impact on costsensitive learning
-
ZHU, X.,WU, X., KHOSHGOFTAAR, T., AND SHI, Y. 2007. An empirical study of noise impact on costsensitive learning. In Proceedings of 20th International Joint Conference on Artificial Intelligence. 1168-1174.
-
(2007)
Proceedings of 20th International Joint Conference on Artificial Intelligence
, pp. 1168-1174
-
-
Zhu, X.1
Wu, X.2
Khoshgoftaar, T.3
Shi, Y.4
|