메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages

CSNL: A cost-sensitive non-linear decision tree algorithm

Author keywords

Cost sensitive learning; Decision tree learning

Indexed keywords

COST-SENSITIVE; COST-SENSITIVE ALGORITHM; COST-SENSITIVE LEARNING; DATA SETS; DECISION TREE LEARNING; DECISION TREE LEARNING ALGORITHM; MISCLASSIFICATIONS; MULTIPLE TREES; NON-LINEAR;

EID: 77953193051     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/1754428.1754429     Document Type: Article
Times cited : (13)

References (59)
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison or voting classification algorithms: Bagging, boosting, and variants
    • BAUER, E. AND KOHAVI, R. 1999. An empirical comparison or voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36, 1-2, 105-139.
    • (1999) Mach. Learn , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0002935122 scopus 로고    scopus 로고
    • On mathmatical programming methods and support vector machines
    • A. Schoelkopf, C. Burges, and A. Smola, Eds. MIT Press, Cambridge, MA, Chapter
    • BENNETT, K. P. 1999. On mathmatical programming methods and support vector machines. In Advances in Kernel Methods-Support Vector Machines, A. Schoelkopf, C. Burges, and A. Smola, Eds. MIT Press, Cambridge, MA, Chapter 19, 307-326.
    • (1999) Advances in Kernel Methods-Support Vector Machines , vol.19 , pp. 307-326
    • Bennett, K.P.1
  • 7
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine
    • BLAKE, C. AND MERZ, C. 1998. UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine. http://www.ics.uci.edu/mlearn/ MLRepository.html.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.1    Merz, C.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • BREIMAN, L. 1996. Bagging predictors. Mach. Learn. 24, 2, 123-140.
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0031101089 scopus 로고    scopus 로고
    • Simplifying decision trees: A survey
    • BRESLOW, L. AND AHA, D. 1997b. Simplifying decision trees: A survey. Knowl. Engin. Rev. 12, 1-40.
    • (1997) Knowl. Engin. Rev , vol.12 , pp. 1-40
    • Breslow, L.1    Aha, D.2
  • 14
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for decision-tree induction
    • BUNTINE, W. AND NIBLETT, T. 1992. A further comparison of splitting rules for decision-tree induction. Mach. Learn. 8, 75-85.
    • (1992) Mach. Learn. , vol.8 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 15
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • DASH, M. AND LIU, H. 1997. Feature selection for classification. Intell. Data Anal. 1, 3, 131-156.
    • (1997) Intell. Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 17
    • 0028498902 scopus 로고
    • Goal-directed classification using linear machine decision trees
    • DRAPER, B., BRODLEY, C. E., AND UTGOFF, P. E. 1994. Goal-directed classification using linear machine decision trees. IEEE Trans. Patt. Anal. Mach. Intel. 16, 9, 888-893.
    • (1994) IEEE Trans. Patt. Anal. Mach. Intel , vol.16 , Issue.9 , pp. 888-893
    • Draper, B.1    Brodley, C.E.2    Utgoff, P.E.3
  • 18
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • DRUMMOND, C. AND HOLTE, R. 2006. Cost curves: An improved method for visualizing classifier performance. Mach. Learn. 65, 1, 95-130.
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.2
  • 20
    • 55349084778 scopus 로고    scopus 로고
    • Anytime induction of low-cost, low-error classifiers: A sampling-based approach
    • ESMEIR, S. AND MARKOVITCH, S. 2008. Anytime induction of low-cost, low-error classifiers: a sampling-based approach. J. Artif. Intel. Resear. 33, 1-31.
    • (2008) J. Artif. Intel. Resear , vol.33 , pp. 1-31
    • Esmeir, S.1    Markovitch, S.2
  • 23
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • FISHER, R. 1936. The use of multiple measurements in taxonomic problems. Annal. Eugen. 8, 179-188.
    • (1936) Annal. Eugen. , vol.8 , pp. 179-188
    • Fisher, R.1
  • 25
    • 0022559425 scopus 로고
    • Optimization of control parameters for genetic algorithms
    • GREFENSTETTE, J. 1986. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man, Cybern. 16, 122-128.
    • (1986) IEEE Trans. Syst. Man, Cybern , vol.16 , pp. 122-128
    • Grefenstette, J.1
  • 26
    • 0031224390 scopus 로고    scopus 로고
    • Use of contextual information for feature ranking and discretization
    • HONG, S. J. 1997. Use of contextual information for feature ranking and discretization. IEEE Trans. Knowl. Data Engin. 9, 718-730.
    • (1997) IEEE Trans. Knowl. Data Engin , vol.9 , pp. 718-730
    • Hong, S.J.1
  • 27
    • 33846274880 scopus 로고    scopus 로고
    • Cost-sensitive feature acquisition and classification
    • JI, S. AND CARIN, L. 2007. Cost-sensitive feature acquisition and classification. Patt. Recog. 40, 5, 1474-1485.
    • (2007) Patt. Recog. , vol.40 , Issue.5 , pp. 1474-1485
    • Ji, S.1    Carin, L.2
  • 29
    • 84868255873 scopus 로고    scopus 로고
    • Prediction-time active feature-value acquisition for customer targeting
    • KANANI, P. AND MELVILLE, P. 2008. Prediction-time active feature-value acquisition for customer targeting. In Proceedings of the Workshop on Cost Sensitive Learning. http://www. cs.iastate.edu/oksayakh/csl/accepted papers/kanani.pdf.
    • (2008) Proceedings of the Workshop on Cost Sensitive Learning
    • Kanani, P.1    Melville, P.2
  • 31
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • KOHAVI, R. AND JOHN, G. H. 1997. Wrappers for feature subset selection. Artif. Intel. 97, 1-2, 273-324.
    • (1997) Artif. Intel. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 32
    • 33746336969 scopus 로고    scopus 로고
    • Test strategies for cost-sensitive decision trees
    • LING, C., SHENG, V., AND YANG, G. 2006. Test strategies for cost-sensitive decision trees. IEEE Trans. Knowl. Data Engin. 18, 8, 1055-1067.
    • (2006) IEEE Trans. Knowl. Data Engin , vol.18 , Issue.8 , pp. 1055-1067
    • Ling, C.1    Sheng, V.2    Yang, G.3
  • 33
    • 10044229031 scopus 로고    scopus 로고
    • Ph.D. thesis, School of Electrical Engineering and Computer Science, Oregan State University, Corvallis, OR
    • MARGINEANTU, D. 2001. Methods for cost-sensitive learning. Ph.D. thesis, School of Electrical Engineering and Computer Science, Oregan State University, Corvallis, OR.
    • (2001) Methods for Cost-sensitive Learning
    • Margineantu, D.1
  • 34
    • 85046873967 scopus 로고    scopus 로고
    • The DET curve in assessment of detection task performance
    • International Speech Communications Association
    • MARTIN, A., DODDINGTON, G., KAMM, T., ORDOWSKI, M., AND PRZYBOCKI, M. 1997. The DET curve in assessment of detection task performance. In Proceedings of Eurospeech'97. International Speech Communications Association, 1895-1898.
    • (1997) Proceedings of Eurospeech'97 , pp. 1895-1898
    • Martin, A.1    Doddington, G.2    Kamm, T.3    Ordowski, M.4    Przybocki, M.5
  • 36
    • 77956005954 scopus 로고    scopus 로고
    • On the design of loss functions for classification: Theory, robustness to outliers, and SavageBoost
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds
    • MASNADI-SHIRAZI, H. AND VASCONCELOS, N. 2008. On the design of loss functions for classification: Theory, robustness to outliers, and SavageBoost. In Proceedings of Neural Information Processing Systems. D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds. 1049-1056.
    • (2008) Proceedings of Neural Information Processing Systems , pp. 1049-1056
    • Masnadi-Shirazi, H.1    Vasconcelos, N.2
  • 38
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • MINGERS, J. 1989. An empirical comparison of pruning methods for decision tree induction. Mach. Learn. 4, 227-243.
    • (1989) Mach. Learn. , vol.4 , pp. 227-243
    • Mingers, J.1
  • 39
  • 41
    • 0026154832 scopus 로고
    • The use of background knowledge in decision tree induction
    • ŃUÑEZ, M. 1991. The use of background knowledge in decision tree induction. Mach. Learn. 6, 231-250.
    • (1991) Mach. Learn. , vol.6 , pp. 231-250
    • Ńuñez, M.1
  • 43
    • 0033879297 scopus 로고    scopus 로고
    • Knowledge discovery from data?
    • PAZZANI, M. J. 2000. Knowledge discovery from data? IEEE Intel. Syst. 15, 2, 10-13.
    • (2000) IEEE Intel. Syst , vol.15 , Issue.2 , pp. 10-13
    • Pazzani, M.J.1
  • 44
    • 0001834468 scopus 로고
    • Inductive policy: The pragmatics of bias selection
    • PROVOST, F. J. AND BUCHANAN, B. G. 1995. Inductive policy: The pragmatics of bias selection. Mach. Learn. 20, 35-61.
    • (1995) Mach. Learn. , vol.20 , pp. 35-61
    • Provost, F.J.1    Buchanan, B.G.2
  • 46
    • 0023417432 scopus 로고
    • Simplifying decision trees
    • QUINLAN, J. R. 1987. Simplifying decision trees. Int. J. Man-Mach. Stud. 27, 221-234.
    • (1987) Int. J. Man-Mach. Stud , vol.27 , pp. 221-234
    • Quinlan, J.R.1
  • 48
    • 84950658032 scopus 로고
    • The elicitation of personal probabilities and expectations
    • SAVAGE, L. 1971. The elicitation of personal probabilities and expectations. J. Am. Statist. Ass. 66, 783-801.
    • (1971) J. Am. Statist. Ass , vol.66 , pp. 783-801
    • Savage, L.1
  • 50
    • 0027682298 scopus 로고
    • Cost-sensitive learning of classification knowledge and its applications in robotics
    • TAN,M. 1993. Cost-sensitive learning of classification knowledge and its applications in robotics. Mach. Learn. 13, 7-33.
    • (1993) Mach. Learn. , vol.13 , pp. 7-33
    • Tan, M.1
  • 51
    • 0002804620 scopus 로고    scopus 로고
    • A comparative study of cost-sensitive boosting algorithms
    • Morgan Kaufmann, San Francisco
    • TING, K. 2000. A comparative study of cost-sensitive boosting algorithms. In Proceedings of the 17th International Conference on Machine Learning. Morgan Kaufmann, San Francisco, 983-990.
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 983-990
    • Ting, K.1
  • 53
    • 0000865580 scopus 로고
    • Cost sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • TURNEY, P. 1995. Cost sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm. J. Artif. Intel. Resear. 2, 369-409.
    • (1995) J. Artif. Intel. Resear. , vol.2 , pp. 369-409
    • Turney, P.1
  • 55
    • 33745217503 scopus 로고    scopus 로고
    • Inducing cost-sensitive nonlinear decision trees
    • Science and Engineering, University of Salford
    • VADERA, S. 2005a. Inducing cost-sensitive nonlinear decision trees, Tech. rep. School of Computing, Science and Engineering, University of Salford.
    • (2005) Tech. Rep. School of Computing
    • Vadera, S.1
  • 56
    • 33745182915 scopus 로고    scopus 로고
    • Inducing safer oblique trees without costs
    • VADERA, S. 2005b. Inducing safer oblique trees without costs. Int. J. Knowl. Engin. Neural Netw. 22, 4, 206-221.
    • (2005) Int. J. Knowl. Engin. Neural Netw , vol.22 , Issue.4 , pp. 206-221
    • Vadera, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.